CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Determination of charge-compensated C3v (II) centers for Er 3+ ions in CdF2 and CaF2 crystals |
Rui-Peng Chai(柴瑞鹏)1,†, Dan-Hui Hao(郝丹辉)2, Dang-Li Gao(高当丽)1, and Qing Pang(庞庆)1 |
1 College of Science, Xi'an University of Architecture and Technology, Xi'an 710055, China; 2 Xi'an University of Architecture and Technology Huaqing College, Xi'an 710043, China |
|
|
Abstract A unified theoretical method is established to determine the charge-compensated C3v (II) centers of Er3+ ions in CdF2 and CaF2 crystals by simulating the electron paramagnetic resonance (EPR) parameters and Stark energy levels. The potential (Er3+-F--$\mathrm{O}_\mathrm4^\mathrm2-$) and (Er3+-$\mathrm{F}_\mathrm7^\mathrm-$-O2-) structures for the C3v (II) centers of Er3+ ions in CdF2 and CaF2 crystals are checked by diagonalizing 364×364 complete energy matrices in the scheme of superposition model. Our studies indicate that the C3v (II) centers of Er3+ ions in CdF2 and CaF2 may be ascribed to the local (Er3+-F--$\mathrm{O}_\mathrm4^\mathrm2-$) structure, where the upper ligand ion F- undergoes an off-center displacement by ∆ Z≈ 0.3 Å for CdF2 and ∆ Z≈ 0.29 Å for the CaF2 along the C3 axis. Meanwhile, a local compressed distortion of the (ErFO4)6- cluster is expected to be ∆ R≈ 0.07 Å for CdF2:Er3+ and ∆ R≈ 0.079 Å for CaF2:Er3+. The considerable g-factor anisotropy for Er3+ ions in each of both crystals is explained reasonably by the obtained local parameters. Furthermore, our studies show that a stronger covalent effect exists in the C3v (II) center for Er3+ in CaF2 or CaF2, which may be due to the stronger electrostatic interaction and closer distance between the central Er3+ ion and ligand O2- with the (Er3+-F--$\mathrm{O}_\mathrm4^\mathrm2-$) structure.
|
Received: 26 August 2020
Revised: 21 October 2020
Accepted manuscript online: 22 October 2020
|
PACS:
|
76.30.-v
|
(Electron paramagnetic resonance and relaxation)
|
|
75.10.Dg
|
(Crystal-field theory and spin Hamiltonians)
|
|
31.15.-p
|
(Calculations and mathematical techniques in atomic and molecular physics)
|
|
76.30.Kg
|
(Rare-earth ions and impurities)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 1170513), the Natural Science Foundation of Shaanxi Province, China (Grant No. Z20200051), the Foundation of the Education Department of Shaanxi Provincial Government, China (Grant No. 16JK1461), and the Scientific Research Foundation of Xi'an University of Architecture and Technology, China (Grant No. QN1729). |
Corresponding Authors:
†Corresponding author. E-mail: chairuipeng2005@163.com
|
Cite this article:
Rui-Peng Chai(柴瑞鹏), Dan-Hui Hao(郝丹辉), Dang-Li Gao(高当丽), and Qing Pang(庞庆) Determination of charge-compensated C3v (II) centers for Er 3+ ions in CdF2 and CaF2 crystals 2021 Chin. Phys. B 30 037601
|
1 Struebing C, Chong J Y, Lee G, Zavala M, Erickson A, Ding Y, Wang C L, Diawara Y, Engles R, Wagner B and Kang Z T 2016 Appl. Phys. Lett. 108 153106 2 Jacobsohn L G, Mcpherson C L, Sprinkle K B, Yukihara E G, Devol T A and Ballato J 2011 Appl. Phys. Lett. 99 113111 3 Ivanovskikh K V, Hughes-Currie R B, Reid M F, Wells J P R, Sokolov N S and Reeves R J 2016 J. Appl. Phys. 119 104305 4 Cortelletti P, Pedroni M, Boschi F, Pin S, Ghigna P, Canton P, Vetrone F and Speghini A. 2018 Cryst. Growth Des. 18 686 5 Su F H, Chen W, Ding K and Li G H 2008 J. Phys. Chem. A 112 4772 6 Barandiar\'an Z and Seijo L 2015 J. Chem. Phys. 143 144702 7 Rakov N and Maciel G S 2017 J. Appl. Phys. 121 113103 8 Yang Z, Guo C F, Chen Y Q, Li L, Li T and Jeong J H 2014 Chin. Phys. B 23 064212 9 Hu T J, Cui X Y, Wang J S, Zhang J K, Li X F, Yang J H and Gao C X 2018 Chin. Phys. B 27 016401 10 Zhang F, Zhang H N, Liu D H, Liu J, Ma F K, Jiang D P, Pang S Y, Su L B and Xu J 2017 Chin. Phys. B 26 024205 11 Lopes C C, Barros V S M, Asfora V K, Yamamoto, Khoury H J and Guzzo P 2018 J. Lumin. 199 266 12 Li W W, Huang H J, Mei B C, Wang C, Liu J, Wang S Z, Jiang D P and Su L B 2020 Ceram. Int. 46 19530 13 Wang R, Yuan M H, Zhang C F, Wang H Y and Xu X J 2018 Opt. Mater. 79 403 14 Balabhadra S, Reid M F, Golovko V and Wells J P R 2020 J. Alloys Compd. 834 155165 15 Bendjedaa F, Diaf M, Boulma E, Djellab S, Guerbous L and Jouart J P 2017 J. Alloys Compd. 693 48 16 Souza W S, Domingues R O, Bueno L A, da Costa E B and Gouveia A S 2013 J. Lumin. 144 87 17 Zhang C M, Hou Z Y, Chai R T, Cheng Z Y, Xu Z H, Li C X, Huang L and Lin J 2010 J. Phys. Chem. C 114 6928 18 Ma C S, Jiao Q, Li L J, Zhou D C, Yang Z W, Song Z G and Qiu J B 2014 Chin. Phys. B 23 057802 19 Hu Y B, Qiu J B, Zhou D C, Song Z G, Yang Z W, Wang R F, Jiao Q and Zhou D L 2014 Chin. Phys. B 23 024205 20 Lian H Z, Liu J, Ye Z R and Shi C S 2004 Chem. Phys. Lett. 386 291 21 Lie L, Xie B X, Li Y Y, Zhang J J and Xu S Q 2017 J. Lumin. 190 462 22 Eftimie E L A, Avram C N, Brik M G, Chernyshev V A and Avram N M 2019 J. Lumin. 214 116577 23 Aminov L K, Gafurov M R, Kurkin I N, Malkin B Z and Rodionov A A 2018 Phys. Solid State 60 912 24 Chehaidar A and Hirsch L 2000 Eur. Phys. J. A 12 79 25 Le\'sniak K 1990 J. Phys.: Condens. Matter 2 5563 26 Leung A F 1973 J. Phys. C: Solid State Phys. 6 2234 27 Chai R P, Kuang X Y, Liang L and Yu G H 2015 J. Phys. Chem. Solids 80 1 28 Chai R P, Hao D H, Kuang X Y and Liang L 2015 Spectrochim. Acta Part A 150 829 29 Chai R P, Kuang X Y, Duan M L and Zhang C X 2010 Spectrochim. Acta Part A 77 253 30 Chai R P, Li L, Liang L and Pang Q 2016 Chin. Phys. B 25 077601 31 Ranon U and Low W 1963 Phys. Rev. 132 1609 32 Ensign T C and Byer N E 1973 Phys. Rev. B 7 907 33 Tallant D R and Wright J C 1975 J. Chem. Phys. 63 2074 34 Mho S and Wright J C 1984 J. Chem. Phys. 81 1421 35 Cockroft N J, Thompson D, Jones G D and Syme R W G 1987 J. Chem. Phys. 86 521 36 Cockroft N J, Jones G D and Syme R W G 1990 J. Chem. Phys. 92 2166 37 Miller M P and Wright J C 1978 J. Chem. Phys. 68 1548 38 Reddy T Rs, Davies E R, Baker J M, Chambers D N, Newman R C and \"Ozbay B 1971 Phys. Lett. A 36 231 39 Chambers D N, Newman R C 1971 J. Phys. C: Solid State Phys. 4 3015 40 Chambers D N, Newman R C 1971 J. Phys. C: Solid State Phys. 5 997 41 Li H, Kuang X Y, Mao A J and Li C G 2013 Spectrochim. Acta Part A. 102 169 42 Carnall W T, Goodman G L, Rajnak K and Rana R S 1989 J. Chem. Phys. 90 3443 43 Liu G K and Jacquier B2005 Spectroscopic Properties of Rare Earths in Optical Materials (Beijing: Tsinghua University Press and Berlin, Heidelberg: Springer-Verlag) pp. 11-37 44 Wybourne B G1965 Spectroscopic Properties of Rare Earths (New York: John Wiley & Sons, Inc.) p. 39 45 Newman D J and Ng B 1989 Rep. Prog. Phys. 52 699 46 Newman D J and B Ng2000 Crystal Field Handbook (Cambridge: Cambridge University Press) pp. 6-43 47 Abragam A and Bleaney B1986 Electron Paramagnetic Resonance of Transition Ions(New York: Dover Publications, Inc.) pp. 277-341 48 Lea K R, Leask M J M and Wolf W P 88 1962 J. Phys. Chem. Solids 23 1381 49 Chai R P, Kuang X Y, Li C G and Zhao Y R 2011 Chem. Phys. Lett. 505 65 50 Jørgensen C K1962 Absorption Spectra and Chemical Bonding in Complexes (Oxford: Pergamon Press) p. 296 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|