CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Low-dimensional phases engineering for improving the emission efficiency and stability of quasi-2D perovskite films |
Yue Wang(王月), Zhuang-Zhuang Ma(马壮壮), Ying Li(李营), Fei Zhang(张飞), Xu Chen(陈旭)‡, and Zhi-Feng Shi (史志锋)† |
Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China |
|
|
Abstract The two-dimensional (2D) Ruddlesden-Popper-type perovskites, possessing tunable bandgap, narrow light emission, strong quantum confinement effect, as well as a simple preparation method, are identified as a new generation of candidate materials for efficient light-emitting diodes. However, the preparation of high-quality quasi-2D perovskite films is still a challenge currently, such as the severe mixing of phases and a high density of defects within the films, impeding the further promotion of device performance. Here, we prepared the quasi-2D PEA2MAn-1PbnBr3n+1 perovskite films by a modified spin-coating method, and the phases with large bandgap were effectively suppressed by the vacuum evaporation treatment. We systematically investigated the optical properties and stability of the optimized films, and the photoluminescence (PL) quantum yield of the treated films was enhanced from 23% to 45%. We also studied the emission mechanisms by temperature-dependent PL spectra. Moreover, the stability of films against moisture, ultraviolet light, and heat was also greatly improved.
|
Received: 14 January 2021
Revised: 19 February 2021
Accepted manuscript online: 24 February 2021
|
PACS:
|
78.40.Fy
|
(Semiconductors)
|
|
78.67.-n
|
(Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11774318, 12074347, 12004346, and 61935009) and the Open Fund of State Key Laboratory of Integrated Optoelectronics (Grant No. IOSKL2020KF04). |
Corresponding Authors:
Xu Chen, Zhi-Feng Shi
E-mail: shizf@zzu.edu.cn;xchen@zzu.edu.cn
|
Cite this article:
Yue Wang(王月), Zhuang-Zhuang Ma(马壮壮), Ying Li(李营), Fei Zhang(张飞), Xu Chen(陈旭), and Zhi-Feng Shi (史志锋) Low-dimensional phases engineering for improving the emission efficiency and stability of quasi-2D perovskite films 2021 Chin. Phys. B 30 067802
|
[1] Zhang F, Zhong H Z, Chen C, Wu X G, Hu X M, Huang H L, Han J B, Zou B S and Dong Y P 2015 ACS Nano 9 4533 [2] Li Y, Shi Z, Liang W Q, Wang L, Li S, Zhang F, Ma Z, Wang Y, Tian Y, Wu D, Li X, Zhang Y, Shan C and Fang X S 2020 Mater. Horiz. 7 530 [3] Yang J X, Zhang P, Wang J P and Wei S H 2020 Chin. Phys. B 29 108401 [4] Shen Z H, Song P J, Qiao B, Cao J Y, Bai Q Y, Song D D, Xu Z, Zhao S L, Zhang G Q and Wu Y J 2019 Chin. Phys. B 28 086102 [5] Li Y, Shi Z F, Li X J and Shan C X 2019 Chin. Phys. B 28 017803 [6] Lin K, Xing J, Quan L N, Arquer F P G D, Gong X W, Lu J X, Xie L Q, Zhao W J, Zhang D, Yan C Z, Li W Q, Liu X Y, Lu Y, Kirman J, Sargent E H, Xiong Q H and Wei Z H 2018 Nature 562 245 [7] Cao Y, Wang N N, Tian H, Guo J S, Wei Y Q, Chen H, Miao Y F, Zou W, Pan K, He Y R, Cao H, Ke Y, Xu M M, Wang Y, Yang M, Du K, Fu Z W, Kong D C, Dai D X, Jin Y Z, Li G Q, Li H, Peng Q M, Wang J P and Huang W 2018 Nature 562 249 [8] Shi Z, Li Y, Zhang Y, Chen Y, Li X, Wu D, Xu T, Shan C and Du G 2017 Nano Lett. 17 313 [9] Xing G C, Wu B, Wu X Y, Li M J, Du B, Wei Q, Guo J, Yeow E K L, Sum T C and Huang W 2017 Nat. Commun. 8 14558 [10] Richter J, Abdi-Jalebi M, Sadhana A, Tabachnyk M, Rivett J P H, Pazos-Outón L M, Gödel K C, Price M, Deschler F and Friend R H 2016 Nat. Commun. 7 13941 [11] Cheng L, Jiang T, Cao Y, Yi C, Wang N N, Huang W and Wang J P 2020 Adv. Mater. 32 1904163 [12] Chen Y N, Sun Y, Peng J J, Tang J H, Zheng K B and Liang Z Q 2018 Adv. Mater. 30 1703487 [13] Liu X K and Gao F 2018 J. Phys. Chem. Lett. 9 2251 [14] Era M, Morimoto S, Tsutsui T and Saito S 1994 Appl. Phys. Lett. 65 676 [15] Quan L N, Zhao Y B, Arquer P G F, Sabatini R, Walters G, Voznyy O, Comin R, Li Y Y, Fan J Z, Tan H, Pan J, Yuan M J, Bakr O M, Lu Z H, Kim D H and Sargent E H 2017 Nano Lett. 17 3701 [16] Yang X L, Zhang X W, Deng J X, Chu Z M, Jiang Q, Meng J H, Wang P Y, Zhang L Q, Yin Z G and You J B 2018 Nat. Commun. 9 2 [17] Smith M D, Connor B A and Karunadasa H I 2019 Chem. Rev. 119 3104 [18] Ban M Y, Zou Y T, Rivett J P H, Yang Y G, Thomas T H, Tan Y S, Song T, Gao X Y, Credgington D, Deschler F, Sirringhaus H and Sun B Q 2018 Nat. Commun. 9 1 [19] Lee H D, Kim H, Cho H, Cha W, Hong Y, Kim Y H, Sadhanala A, Venugopalan V, Kim J S, Choi J W, Lee C L, Kim D, Yang H C, Friend R H and Lee T W 2019 Adv. Funct. Mater. 29 1901225 [20] Wang Z B, Wang F Z, Sun W D, Ni R H, Hu S Q, Liu J Y, Zhang B, Alsaed A, Hayat T and Tan Z 2018 Adv. Funct. Mater. 28 1804187 [21] Pang P Y, Jin G R, Liang C, Wang B Z, Xiang W, Zhang D L, Xu J W, Hong W, Xiao Z W, Wang L, Xing G C, Chen J S and Ma D G 2020 ACS Nano 14 11420 [22] Jeon N J, Noh J H, Kim Y C, Kim Y C, Yang W S, Ryu S C and Seok S I 2014 Nat. Mater. 13 897 [23] Ma S, Cai M L, Cheng T, Ding X H, Shi X Q, Alsaedi A, Hayat T, Ding Y and Dai S Y 2018 Sci. China Mater. 61 1257 [24] Liang D, Peng Y L, Fu Y P, Shearer M J, Zhang J J, Zhai J Y, Zhang Y, Hamers R J, Andrew T L and Jin S 2016 ACS Nano 10 6897 [25] Ren Z W, Li L, Yu J H, Ma R M, Xiao X T, Chen R, Wang K, Sun X W, Jin W J and Choy W C H 2020 ACS Energy Lett. 5 2569 [26] Xiao Z G, Kerner R A, Zhao L F, Tran N L, Lee K M, Koh T W, Scholes G D and Rand B P 2017 Nat. Photon. 11 108 [27] Yang X L, Chu Z M, Meng J H, Yin Z G, Zhang X W, Deng J X and You J B 2019 J. Phys. Chem. Lett. 10 2892 [28] Cho H, Jeong S H, Park M H, Kim Y H, Wolf C, Lee C L, Heo J H, Sadhanala A, Myoung N, Yoo S, Im S H, Friend R H and Lee T W 2015 Science 350 1222 [29] Yuan S, Wang Z K, Xiao L X, Zhang C F, Yang S Y, Chen B B, Ge H T, Tian Q S, Jin Y and Liao L S 2019 Adv. Mater. 31 1904319 [30] Shi Z F, Li S, Li Y, Ji H F, Li X J, Wu D, Xu T T, Chen Y S, Tian Y T, Zhang Y T, Shan C X and Du G T 2018 ACS Nano 12 1462 [31] Zhang F, Shi Z F, Ma Z Z, Li Y, Li S, Wu D, Xu T T, Li X J, Shan C X and Du G T 2018 Nanoscale 10 20131 [32] Ma Z Z, Shi Z F, Qin C C, Cui M H, Yang D W, Wang X J, Wang L T, Ji X Z, Chen X, Sun J L, Wu D, Zhang Y, Li X J, Zhang L J and Shan C X 2020 ACS Nano 14 4475 [33] Savenije T J, Ponseca C S, Kunneman L, Abdellah M, Zheng K B, Tian Y X, Zhu Q S, Canton S E, Scheblykin I G, Pullerits T, Yartsev A and Sundström V 2014 J. Phys. Chem. Lett. 5 2189 [34] Wang S, Ma J Q, Li W C, Wang J, Wang H Z, Shen H Z, Li J Z, Wang J Q, Luo H M and Li D H 2019 J. Phys. Chem. Lett. 10 2546 [35] Rudin S, Reinecke T L and Segall B 1990 Phys. Rev. B 42 11218 [36] Ma Z, Shi Z, Wang L, Zhang F, Wu D, Yang D, Chen X, Zhang Y, Shan C and Li X J 2020 Nanoscale 12 3637 [37] Cao Z, Hu F, Man Z, Zhang C, Zhang W, Wang X and Xiao M 2020 Chin. Phys. Lett. 37 127801 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|