Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(6): 067802    DOI: 10.1088/1674-1056/abe92b
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Low-dimensional phases engineering for improving the emission efficiency and stability of quasi-2D perovskite films

Yue Wang(王月), Zhuang-Zhuang Ma(马壮壮), Ying Li(李营), Fei Zhang(张飞), Xu Chen(陈旭), and Zhi-Feng Shi (史志锋)
Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
Abstract  The two-dimensional (2D) Ruddlesden-Popper-type perovskites, possessing tunable bandgap, narrow light emission, strong quantum confinement effect, as well as a simple preparation method, are identified as a new generation of candidate materials for efficient light-emitting diodes. However, the preparation of high-quality quasi-2D perovskite films is still a challenge currently, such as the severe mixing of phases and a high density of defects within the films, impeding the further promotion of device performance. Here, we prepared the quasi-2D PEA2MAn-1PbnBr3n+1 perovskite films by a modified spin-coating method, and the phases with large bandgap were effectively suppressed by the vacuum evaporation treatment. We systematically investigated the optical properties and stability of the optimized films, and the photoluminescence (PL) quantum yield of the treated films was enhanced from 23% to 45%. We also studied the emission mechanisms by temperature-dependent PL spectra. Moreover, the stability of films against moisture, ultraviolet light, and heat was also greatly improved.
Keywords:  quasi-2D perovskite films      vacuum evaporation      optical properties      stability  
Received:  14 January 2021      Revised:  19 February 2021      Accepted manuscript online:  24 February 2021
PACS:  78.40.Fy (Semiconductors)  
  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11774318, 12074347, 12004346, and 61935009) and the Open Fund of State Key Laboratory of Integrated Optoelectronics (Grant No. IOSKL2020KF04).
Corresponding Authors:  Xu Chen, Zhi-Feng Shi     E-mail:  shizf@zzu.edu.cn;xchen@zzu.edu.cn

Cite this article: 

Yue Wang(王月), Zhuang-Zhuang Ma(马壮壮), Ying Li(李营), Fei Zhang(张飞), Xu Chen(陈旭), and Zhi-Feng Shi (史志锋) Low-dimensional phases engineering for improving the emission efficiency and stability of quasi-2D perovskite films 2021 Chin. Phys. B 30 067802

[1] Zhang F, Zhong H Z, Chen C, Wu X G, Hu X M, Huang H L, Han J B, Zou B S and Dong Y P 2015 ACS Nano 9 4533
[2] Li Y, Shi Z, Liang W Q, Wang L, Li S, Zhang F, Ma Z, Wang Y, Tian Y, Wu D, Li X, Zhang Y, Shan C and Fang X S 2020 Mater. Horiz. 7 530
[3] Yang J X, Zhang P, Wang J P and Wei S H 2020 Chin. Phys. B 29 108401
[4] Shen Z H, Song P J, Qiao B, Cao J Y, Bai Q Y, Song D D, Xu Z, Zhao S L, Zhang G Q and Wu Y J 2019 Chin. Phys. B 28 086102
[5] Li Y, Shi Z F, Li X J and Shan C X 2019 Chin. Phys. B 28 017803
[6] Lin K, Xing J, Quan L N, Arquer F P G D, Gong X W, Lu J X, Xie L Q, Zhao W J, Zhang D, Yan C Z, Li W Q, Liu X Y, Lu Y, Kirman J, Sargent E H, Xiong Q H and Wei Z H 2018 Nature 562 245
[7] Cao Y, Wang N N, Tian H, Guo J S, Wei Y Q, Chen H, Miao Y F, Zou W, Pan K, He Y R, Cao H, Ke Y, Xu M M, Wang Y, Yang M, Du K, Fu Z W, Kong D C, Dai D X, Jin Y Z, Li G Q, Li H, Peng Q M, Wang J P and Huang W 2018 Nature 562 249
[8] Shi Z, Li Y, Zhang Y, Chen Y, Li X, Wu D, Xu T, Shan C and Du G 2017 Nano Lett. 17 313
[9] Xing G C, Wu B, Wu X Y, Li M J, Du B, Wei Q, Guo J, Yeow E K L, Sum T C and Huang W 2017 Nat. Commun. 8 14558
[10] Richter J, Abdi-Jalebi M, Sadhana A, Tabachnyk M, Rivett J P H, Pazos-Outón L M, Gödel K C, Price M, Deschler F and Friend R H 2016 Nat. Commun. 7 13941
[11] Cheng L, Jiang T, Cao Y, Yi C, Wang N N, Huang W and Wang J P 2020 Adv. Mater. 32 1904163
[12] Chen Y N, Sun Y, Peng J J, Tang J H, Zheng K B and Liang Z Q 2018 Adv. Mater. 30 1703487
[13] Liu X K and Gao F 2018 J. Phys. Chem. Lett. 9 2251
[14] Era M, Morimoto S, Tsutsui T and Saito S 1994 Appl. Phys. Lett. 65 676
[15] Quan L N, Zhao Y B, Arquer P G F, Sabatini R, Walters G, Voznyy O, Comin R, Li Y Y, Fan J Z, Tan H, Pan J, Yuan M J, Bakr O M, Lu Z H, Kim D H and Sargent E H 2017 Nano Lett. 17 3701
[16] Yang X L, Zhang X W, Deng J X, Chu Z M, Jiang Q, Meng J H, Wang P Y, Zhang L Q, Yin Z G and You J B 2018 Nat. Commun. 9 2
[17] Smith M D, Connor B A and Karunadasa H I 2019 Chem. Rev. 119 3104
[18] Ban M Y, Zou Y T, Rivett J P H, Yang Y G, Thomas T H, Tan Y S, Song T, Gao X Y, Credgington D, Deschler F, Sirringhaus H and Sun B Q 2018 Nat. Commun. 9 1
[19] Lee H D, Kim H, Cho H, Cha W, Hong Y, Kim Y H, Sadhanala A, Venugopalan V, Kim J S, Choi J W, Lee C L, Kim D, Yang H C, Friend R H and Lee T W 2019 Adv. Funct. Mater. 29 1901225
[20] Wang Z B, Wang F Z, Sun W D, Ni R H, Hu S Q, Liu J Y, Zhang B, Alsaed A, Hayat T and Tan Z 2018 Adv. Funct. Mater. 28 1804187
[21] Pang P Y, Jin G R, Liang C, Wang B Z, Xiang W, Zhang D L, Xu J W, Hong W, Xiao Z W, Wang L, Xing G C, Chen J S and Ma D G 2020 ACS Nano 14 11420
[22] Jeon N J, Noh J H, Kim Y C, Kim Y C, Yang W S, Ryu S C and Seok S I 2014 Nat. Mater. 13 897
[23] Ma S, Cai M L, Cheng T, Ding X H, Shi X Q, Alsaedi A, Hayat T, Ding Y and Dai S Y 2018 Sci. China Mater. 61 1257
[24] Liang D, Peng Y L, Fu Y P, Shearer M J, Zhang J J, Zhai J Y, Zhang Y, Hamers R J, Andrew T L and Jin S 2016 ACS Nano 10 6897
[25] Ren Z W, Li L, Yu J H, Ma R M, Xiao X T, Chen R, Wang K, Sun X W, Jin W J and Choy W C H 2020 ACS Energy Lett. 5 2569
[26] Xiao Z G, Kerner R A, Zhao L F, Tran N L, Lee K M, Koh T W, Scholes G D and Rand B P 2017 Nat. Photon. 11 108
[27] Yang X L, Chu Z M, Meng J H, Yin Z G, Zhang X W, Deng J X and You J B 2019 J. Phys. Chem. Lett. 10 2892
[28] Cho H, Jeong S H, Park M H, Kim Y H, Wolf C, Lee C L, Heo J H, Sadhanala A, Myoung N, Yoo S, Im S H, Friend R H and Lee T W 2015 Science 350 1222
[29] Yuan S, Wang Z K, Xiao L X, Zhang C F, Yang S Y, Chen B B, Ge H T, Tian Q S, Jin Y and Liao L S 2019 Adv. Mater. 31 1904319
[30] Shi Z F, Li S, Li Y, Ji H F, Li X J, Wu D, Xu T T, Chen Y S, Tian Y T, Zhang Y T, Shan C X and Du G T 2018 ACS Nano 12 1462
[31] Zhang F, Shi Z F, Ma Z Z, Li Y, Li S, Wu D, Xu T T, Li X J, Shan C X and Du G T 2018 Nanoscale 10 20131
[32] Ma Z Z, Shi Z F, Qin C C, Cui M H, Yang D W, Wang X J, Wang L T, Ji X Z, Chen X, Sun J L, Wu D, Zhang Y, Li X J, Zhang L J and Shan C X 2020 ACS Nano 14 4475
[33] Savenije T J, Ponseca C S, Kunneman L, Abdellah M, Zheng K B, Tian Y X, Zhu Q S, Canton S E, Scheblykin I G, Pullerits T, Yartsev A and Sundström V 2014 J. Phys. Chem. Lett. 5 2189
[34] Wang S, Ma J Q, Li W C, Wang J, Wang H Z, Shen H Z, Li J Z, Wang J Q, Luo H M and Li D H 2019 J. Phys. Chem. Lett. 10 2546
[35] Rudin S, Reinecke T L and Segall B 1990 Phys. Rev. B 42 11218
[36] Ma Z, Shi Z, Wang L, Zhang F, Wu D, Yang D, Chen X, Zhang Y, Shan C and Li X J 2020 Nanoscale 12 3637
[37] Cao Z, Hu F, Man Z, Zhang C, Zhang W, Wang X and Xiao M 2020 Chin. Phys. Lett. 37 127801
[1] Suppression of laser power error in a miniaturized atomic co-magnetometer based on split ratio optimization
Wei-Jia Zhang(张伟佳), Wen-Feng Fan(范文峰), Shi-Miao Fan(范时秒), and Wei Quan(全伟). Chin. Phys. B, 2023, 32(3): 030701.
[2] Modulational instability of a resonantly polariton condensate in discrete lattices
Wei Qi(漆伟), Xiao-Gang Guo(郭晓刚), Liang-Wei Dong(董亮伟), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2023, 32(3): 030502.
[3] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[4] Improvement of coercivity thermal stability of sintered 2:17 SmCo permanent magnet by Nd doping
Chao-Zhong Wang(王朝中), Lei Liu(刘雷), Ying-Li Sun(孙颖莉), Jiang-Tao Zhao(赵江涛), Bo Zhou (周波), Si-Si Tu(涂思思), Chun-Guo Wang(王春国), Yong Ding(丁勇), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2023, 32(2): 020704.
[5] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[6] Formation of quaternary all-d-metal Heusler alloy by Co doping fcc type Ni2MnV and mechanical grinding induced B2-fcc transformation
Lu Peng(彭璐), Qiangqiang Zhang(张强强), Na Wang(王娜), Zhonghao Xia(夏中昊), Yajiu Zhang(张亚九),Zhigang Wu(吴志刚), Enke Liu(刘恩克), and Zhuhong Liu(柳祝红). Chin. Phys. B, 2023, 32(1): 017102.
[7] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[8] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[9] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[10] Parametric decay instabilities of lower hybrid waves on CFETR
Taotao Zhou(周涛涛), Nong Xiang(项农), Chunyun Gan(甘春芸), Guozhang Jia(贾国章), and Jiale Chen(陈佳乐). Chin. Phys. B, 2022, 31(9): 095201.
[11] Kinetic theory of Jeans' gravitational instability in millicharged dark matter system
Hui Chen(陈辉), Wei-Heng Yang(杨伟恒), Yu-Zhen Xiong(熊玉珍), and San-Qiu Liu(刘三秋). Chin. Phys. B, 2022, 31(7): 070401.
[12] Propagation and modulational instability of Rossby waves in stratified fluids
Xiao-Qian Yang(杨晓倩), En-Gui Fan(范恩贵), and Ning Zhang(张宁). Chin. Phys. B, 2022, 31(7): 070202.
[13] All polarization-maintaining Er:fiber-based optical frequency comb for frequency comparison of optical clocks
Pan Zhang(张攀), Yan-Yan Zhang(张颜艳), Ming-Kun Li(李铭坤), Bing-Jie Rao(饶冰洁), Lu-Lu Yan(闫露露), Fa-Xi Chen(陈法喜), Xiao-Fei Zhang(张晓斐), Qun-Feng Chen(陈群峰), Hai-Feng Jiang(姜海峰), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2022, 31(5): 054210.
[14] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[15] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
No Suggested Reading articles found!