Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(4): 047804    DOI: 10.1088/1674-1056/21/4/047804
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Size-dependent nonlinear absorption and refraction of Ag nanoparticles excited by femtosecond lasers

Fan Guang-Hua(范光华)a), Qu Shi-Liang(曲士良)a)†, Guo Zhong-Yi(郭忠义)a)b), Wang Qiang(王强)a), and Li Zhong-Guo(李中国)c)
a. Department of Optoelectronics Science, Harbin Institute of Technology at Weihai, Weihai 264209, China;
b. Department of Physics, Harbin Institute of Technology, Harbin 150001, China;
c. School of Physical Science and Technology, Suzhou University, Suzhou 215006, China
Abstract  Silver (Ag) nanoparticles with different average sizes are prepared, and the nonlinear absorption and refraction of these nanoparticles are investigated with femtosecond laser pulses at 800 nm. The smallest Ag nanoparticles show insignificant nonlinear absorption, whereas the larger ones show saturable absorption. By considering the previously reported positive nonlinear absorption of 9 nm Ag nanoparticles, the nonlinear absorptions of Ag nanoparticles are found to be size-dependent. All these nonlinear absorptions can be compatibly explained from the viewpoints of electronic transitions, energy bands and electronic structures in the conduction band of Ag nanoparticles. The nonlinear refraction is attributed to the effect of hot electrons arising from the intraband transition in the s-p conduction band of Ag nanoparticles.
Keywords:  nonlinear absorption      nonlinear refraction      silver nanoparticles      electronic structures  
Received:  19 August 2011      Revised:  03 November 2011      Accepted manuscript online: 
PACS:  78.67.Bf (Nanocrystals, nanoparticles, and nanoclusters)  
  73.22.Dj (Single particle states)  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
  42.70.Nq (Other nonlinear optical materials; photorefractive and semiconductor materials)  
Fund: Project supported by the Natural Science Foundation of Heilongjiang Province, China (Grant No. A200912), and the Program of Excellent Team in the Harbin Institute of Technology, China, and the National Natural Science Foundation of China (Grant Nos. 60907023 and 10904027).
Corresponding Authors:  Qu Shi-Liang,slqu1@yahoo.com.cn     E-mail:  slqu1@yahoo.com.cn

Cite this article: 

Fan Guang-Hua(范光华), Qu Shi-Liang(曲士良), Guo Zhong-Yi(郭忠义), Wang Qiang(王强), and Li Zhong-Guo(李中国) Size-dependent nonlinear absorption and refraction of Ag nanoparticles excited by femtosecond lasers 2012 Chin. Phys. B 21 047804

[1] Qu S, Zhang Y, Li H, Qiu J and Zhu C 2006 Opt. Mater. 28 259
[2] Ganeev R A and Ryasnyansky A I 2006 Appl. Phys. B 84 295
[3] Li J, Guo L, Zhang L, Yu C, Yu L, Jiang P, Wei C, Qin F and Shi J 2009 Dalton T. 823
[4] Ganeev R A, Ryasnyansky A I, Stepanov A L and Usmanov T 2004 Phys. Status Solidi B 241 935
[5] Sun Y, Riggs J E, Rollins H W and Guduru R 1999 J. Phys. Chem. B 103 77
[6] Gao R, Choi N, Chang S, Kang S H, Song J M, Cho S I, Lim D W and Choo J 2010 Anal. Chim. Acta 681 87
[7] Huang Q, Zhang X D, Zhang H, Xiong S Z, Geng W D, Geng X H and Zhao Y 2010 Chin. Phys. B 19 047304
[8] Hamanaka Y, Nakamura A, Hayashi N and Omi S 2003 J. Opt. Soc. Am. B 20 1227
[9] Gómez L A, de Ar鄒jo C B, Brito-silva A M and Galembeck A 2008 Appl. Phys. B 92 61
[10] Ganeev R A, Ryasnyansky A I, Stepanov A L and Usmanov T 2004 Opt. Quantum Electron. 36 949
[11] Gurudas U, Brooks E, Bubb D M, Heiroth S, Lippert T and Wokaun A 2008 J. Appl. Phys. 104 073107
[12] Osborne Jr D H, Haglund Jr R F, Gonella F and Garrido F 1998 Appl. Phys. B: Lasers Opt. 66 517
[13] Kyoung M and Lee M 1999 Opt. Commun. 171 145
[14] Unnikrishnan K P, Nampoori V P N, Ramakrishnan V, Umadevi M and Vallabhan C P G 2003 J. Phys. D: Appl. Phys. 36 1242
[15] Ganeev R A, Baba M, Ryasnyansky A I, Suzuki M and Kuroda H 2004 Opt. Commun. 240 437
[16] Falc ao-Filho E L, de Ar鄒jo C B, Galembeck A, Oliveira M M and Zarbin A J G 2005 J. Opt. Soc. Am. B 22 2444
[17] Wang Q Q, Han J B, Gong H M, Chen D J, Zhao X J, Feng J Y and Ren J J 2006 Adv. Funct. Mater. 16 2405
[18] Ding S, Wang X, Chen D J and Wang Q Q 2006 Opt. Express 14 1541
[19] Falc ao-Filho E L, de Ar鄒jo C B and Rodrigues Jr J J 2007 Opt. Soc. Am. B 24 2948
[20] Rativa D, de Araujo R E and Gomes A S L 2008 Opt. Express 16 19244
[21] Lee P C and Miesel D 1982 J. Phys. Chem. 86 3391
[22] Sheik-Bahae M, Said A A, Wei T H, Hagan D J and Van Stryland E W 1990 IEEE J. Quantum Electron. 26 760
[23] Shafeev G A, Freysz E and Bozon-Verduraz F 2004 Appl. Phys. A 78 307
[24] Elim H I, Ji W, Yuwono A H, Xue J M and Wang J 2003 Appl. Phys. Lett. 82 2691
[25] Elim H I, Ji W, Ma G H, Lim K Y, Sow C H and Huan C H A 2004 Appl. Phys. Lett. 85 1799
[26] Rosei R 1974 Phys. Rev. B 10 484
[27] Yang L, Osborne D H, Haglund Jr R F, Magruder R H, White C W, Zuhr R A and Hosono H 1996 Appl. Phys. A: Mater. 62 403
[28] Wertheim G K, DiCenzo S B and Buchanan D N 1986 Phys. Rev. B 33 5384
[29] Vijayakrishnan V, Chainani A, Sarma D D and Rao C N R 1992 J. Phys. Chem. 96 8679
[30] Aiyer H N, Vijayakrishnan V, Subbanna G N and Rao C N R 1994 Surf. Sci. 313 392
[31] Rao C N R, Kulkarni G U, Thomas P J and Edwards P P 2000 Chem. Soc. Rev. 29 27
[32] Fatti N Del, Voisin C, Achermann M, Tzortzakis S, Christofilos D and Vallée F 2000 Phys. Rev. B 61 16956
[33] Lysenko S, Jimenez J, Zhang G and Liu H 2006 J. Electron. Mater. 35 1715
[34] Roberti T W, Smith B A and Zhang J Z 1995 J. Chem. Phys. 102 3860
[35] Fan G, Qu S, Wang Q, Zhao C, Zhang L and Li Z 2011 J. Appl. Phys. 109 023102
[36] Gu B, Wang J, Chen J, Fan Y X, Ding J and Wang H T 2005 Opt. Express 13 9230
[37] He J, Qu Y, Li H and Ji W 2005 Opt. Express 13 9235
[38] Jin X, Wang Y X, Shui M, Li C W, Yang J Y, Zhang X R, Yang K and Song Y L 2010 Chin. Phys. B 19 014217
[39] Kamat P V, Flumiani M and Hartland G V 1998 J. Phys. Chem. B 102 3123
[40] Liu X, Matsumura K, Tomita Y, Yasui K, Kojima K and Chikama K 2010 J. Appl. Phys. 108 073102
[1] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[2] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[3] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
[4] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
[5] Two-dimensional topological semimetals
Xiaolong Feng(冯晓龙), Jiaojiao Zhu(朱娇娇), Weikang Wu(吴维康), and Shengyuan A. Yang(杨声远). Chin. Phys. B, 2021, 30(10): 107304.
[6] Electronic structures, magnetic properties, and martensitic transformation in all-d-metal Heusler-like alloys Cd2MnTM(TM=Fe, Ni, Cu)
Yong Li(李勇), Peng Xu(徐鹏), Xiaoming Zhang(张小明), Guodong Liu(刘国栋), Enke Liu(刘恩克), Lingwei Li(李领伟). Chin. Phys. B, 2020, 29(8): 087101.
[7] Tunable electronic structures of germanane/antimonene van der Waals heterostructures using an external electric field and normal strain
Xing-Yi Tan(谭兴毅), Li-Li Liu(刘利利), Da-Hua Ren(任达华). Chin. Phys. B, 2020, 29(7): 076102.
[8] Electronic and optical properties of GaN-MoS2 heterostructure from first-principles calculations
Dahua Ren(任达华), Xingyi Tan(谭兴毅), Teng Zhang(张腾), Yuan Zhang(张源). Chin. Phys. B, 2019, 28(8): 086104.
[9] Nonlinear behavior of the population dynamics of three-level systems in the presence of single photon absorption
Allam Srinivasa Rao. Chin. Phys. B, 2019, 28(2): 024211.
[10] Electronic properties of size-dependent MoTe2/WTe2 heterostructure
Jing Liu(刘婧), Ya-Qiang Ma(马亚强), Ya-Wei Dai(戴雅薇), Yang Chen(陈炀), Yi Li(李依), Ya-Nan Tang(唐亚楠), Xian-Qi Dai(戴宪起). Chin. Phys. B, 2019, 28(10): 107101.
[11] Interface properties and electronic structures of aromatic molecules with anhydride and thio-functional groups on Ag (111) and Au (111) substrates
Wei-Qi Yu(余维琪), Hong-Jun Xiao(肖红君), Ge-Ming Wang(王戈明). Chin. Phys. B, 2019, 28(10): 103101.
[12] First principles study of stability, mechanical, and electronic properties of chromium silicides
Bo Ren(任博), De-Hong Lu(卢德宏), Rong Zhou(周荣), De-Peng Ji(姬德朋), Ming-Yu Hu(胡明钰), Jing Feng(冯晶). Chin. Phys. B, 2018, 27(10): 107102.
[13] Stability, electronic structures, and mechanical properties of Fe-Mn-Al system from first-principles calculations
Ya-Hui Liu(刘亚会), Xiao-Yu Chong(种晓宇), Ye-Hua Jiang(蒋业华), Jing Feng(冯晶). Chin. Phys. B, 2017, 26(3): 037102.
[14] CN bond orientation in metal carbonitride endofullerenes:A density functional theory study
Zhu-Xia Zhang(张竹霞), Yong Zhang(张勇), Wen-Hua Xue(薛文华), Wei Jia(贾伟), Cai-Li Zhang(张彩丽), Chun-Xia Li(李春霞), Peng Cui(崔鹏). Chin. Phys. B, 2017, 26(12): 123102.
[15] Correlation between electronic structure and energy band in Eu-doped CuInTe2 semiconductor compound with chalcopyrite structure
Tai Wang(王泰), Yong-Quan Guo(郭永权), Shuai Li(李帅). Chin. Phys. B, 2017, 26(10): 103101.
No Suggested Reading articles found!