Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(4): 048101    DOI: 10.1088/1674-1056/21/4/048101
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Step instability of the In0.2Ga0.8As (001) surface during annealing

Zhang Bi-Chan(张毕禅), Zhou Xun(周勋), Luo Zi-Jiang(罗子江) Guo Xiang(郭祥), and Ding Zhao(丁召)
Low-Dimensional Semiconductor Structure Laboratory, College of Science, rm Guizhou University, Guiyang 550025, China
Abstract  Anisotropic evolution of the step edges on the compressive-strained In0.2Ga0.8As/GaAs(001) surface has been investigated by scanning tunneling microscopy (STM). The experiments suggest that step edges are indeed sinuous and protrude somewhere a little way along the [110] direction, which is different from the classical waviness predicted by the theoretical model. We consider that the monatomic step edges undergo a morphological instability induced by the anisotropic diffusion of adatoms on the terrace during annealing, and we improve a kinetic model of step edge based on the classical Burton-Cabrera-Frank (BCF) model in order to determine the normal velocity of step enlargement. The results show that the normal velocity is proportional to the arc length of the peninsula, which is consistent with the first result of our kinetic model. Additionally, a significant phenomenon is an excess elongation along the [1$\bar{1}$0] direction at the top of the peninsula with a higher aspect ratio, which is attributed to the restriction of diffusion lengths.
Keywords:  InGaAs      step instability      surface diffusion      kinetic model  
Received:  08 September 2011      Revised:  08 November 2011      Accepted manuscript online: 
PACS:  81.05.Ea (III-V semiconductors)  
  68.55.J- (Morphology of films)  
  68.35.Fx (Diffusion; interface formation)  
  81.15.Aa (Theory and models of film growth)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60866001), the Special Project for Senior Researcher of Guizhou Organization Department (Grnat No. TZJF 2006.10), Doctor Foundation of Guizhou University, the Innovation Fund of Guizhou University (Grant No. 2011008), the Science and Technological Project for Scholar Abroad, Guizhou Province (Grant No. [2007]03), and the Guizhou Science and Technology Foundation (Grant No. J[2007]2176).
Corresponding Authors:  Ding Zhao,zding@gzu.edu.cn     E-mail:  zding@gzu.edu.cn

Cite this article: 

Zhang Bi-Chan(张毕禅), Zhou Xun(周勋), Luo Zi-Jiang(罗子江) , Guo Xiang(郭祥), and Ding Zhao(丁召) Step instability of the In0.2Ga0.8As (001) surface during annealing 2012 Chin. Phys. B 21 048101

[1] Bales G S and Zangwill A 1990 Phys. Rev. B 41 5500
[2] Zhou G Y, Chen Y H, Yu J L, Zhou X L, Ye X L, Jin P and Wang Z G 2011 Appl. Phys. Lett. 98 071914
[3] Riotte M, Fohtung E, Grigoriev D, Minkevich A A, Slobodskyy T, Schmidbauer M, Metzger T H, Hu D Z, Schaadt D M and Baumbach T Appl. Phys. Lett. 96 083102
[4] Mazur Y I, Ma W Q, Wang X, Wang Z M, Salamo G J, Xiaoa M, Mishima T D and Johnson M B 2003 Appl. Phys. Lett. 83 987
[5] Tersoff K and Tromp R M 1993 Phys. Rev. Lett. 70 18
[6] Xu J B, Zhang H Y, Fu X J, Guo T Y and Huang J 2010 Chin. Phys. B 19 037302
[7] Wang M, Gu Y X, Ji H M, Yang T and Wang Z G 2011 Chin. Phys. B 20 077301
[8] Guan B L, Ren X J, Li C, Li S, Shi G Z and Guo X 2011 Chin. Phys. B 20 094206
[9] Gao H L, Li D L, Zhou W Z, Shang L Y, Wang B Q, Zhu Z P and Zeng Y P 2007 Acta Phys. Sin. 56 4955 (in Chinese)
[10] Wang B R, Sun Z, Xu Z Y, Sun B Q, Ji Y, Wang Z M and Salamo G J 2008 Acta Phys. Sin. 57 1908 (in Chinese)
[11] Yang X J, Wang Q, Ma W Q and Chen L H 2007 Acta Phys. Sin. 56 5429 (in Chinese)
[12] Riposan A, Martin G K M and Millunchick J M 2003 Appl. Phys. Lett. 83 22
[12] Riposan A, Martin G K M and Millunchick J M 2003 Appl. Phys. Lett. 83 22
[13] Shitara T, Zhang J, Neave J H and Joyce B A 1992 J. Appl. Phys. 71 4299
[14] Burton W K, Cabrera N and Frank F C 1951 Philos. Trans. R. Soc. London Ser. A 243 299
[15] Ratsch C, Nelson M D and Zangwll A 1994 Phys. Rev. B 50 14489
[16] Frisch T and Verga A 2005 Phys. Rev. Lett. 94 226102
[17] Tersoff J and Pehlke E 1992 Phys. Rev. Lett. 68 816
[18] Kaganer V M and Ploog K H 2001 Solid State Commun. 117 337
[19] Xie Y H, Gilmer G H and Roland C 1994 Phys. Rev. Lett. 73 3006
[20] Sato M, Uwaha M and Saito Y 2000 Phys. Rev. B 62 12
[21] Grandjean N and Massies J 1993 J. Cryst. Growth 134 51
[22] Saito Y and Uwaha M 1994 Phys. Rev. B 49 10677
[23] Leonard F and Tersoff J 2003 Appl. Phys. Lett. 83 72
[24] Fink H W and Ehrlich G 1986 Surf. Sci. 173 128
[25] Ysuchiya M, Petroff P M and Coldren L A 1989 Appl. Phys. Lett. 54 1690
[26] Caflisch R E, Weinan E, Gyure M F and Ratsch C 1999 Phys. Rev. E 59 6879
[27] Ehrlich G and Hudda F G 1966 J. Chem. Phys. 44 1039
[28] Schwoebel R L and Shipsey E J 1966 J. Appl. Phys. 37 3682
[29] Steigerwald D A, Jacob I and Egelhoff W F 1988 Surf. Sci. 202 472
[30] Kaganer V M and Ploog K H 2001 Phys. Rev. B 64 205301
[31] Mo Y W, Kleiner J, Webb M B and Lagally M G 1991 Appl. Phys. Lett. 66 1998
[1] Atomic-scale insights of indium segregation and its suppression by GaAs insertion layer in InGaAs/AlGaAs multiple quantum wells
Shu-Fang Ma(马淑芳), Lei Li(李磊), Qing-Bo Kong(孔庆波), Yang Xu(徐阳), Qing-Ming Liu(刘青明), Shuai Zhang(张帅), Xi-Shu Zhang(张西数), Bin Han(韩斌), Bo-Cang Qiu(仇伯仓), Bing-She Xu(许并社), and Xiao-Dong Hao(郝晓东). Chin. Phys. B, 2023, 32(3): 037801.
[2] Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙). Chin. Phys. B, 2023, 32(1): 017801.
[3] Impact of gate offset in gate recess on DC and RF performance of InAlAs/InGaAs InP-based HEMTs
Shurui Cao(曹书睿), Ruize Feng(封瑞泽), Bo Wang(王博), Tong Liu(刘桐), Peng Ding(丁芃), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(5): 058502.
[4] Impact of symmetric gate-recess length on the DC and RF characteristics of InP HEMTs
Ruize Feng(封瑞泽), Bo Wang(王博), Shurui Cao(曹书睿), Tong Liu(刘桐), Yongbo Su(苏永波), Wuchang Ding(丁武昌), Peng Ding(丁芃), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(1): 018505.
[5] Characterization of low-resistance ohmic contacts to heavily carbon-doped n-type InGaAsBi films treated by rapid thermal annealing
Shu-Xing Zhou(周书星), Li-Kun Ai(艾立鹍), Ming Qi(齐鸣), An-Huai Xu(徐安怀), Jia-Sheng Yan(颜家圣), Shu-Sen Li(李树森), and Zhi Jin(金智). Chin. Phys. B, 2021, 30(2): 027304.
[6] Theoretical study of overstretching DNA-RNA hybrid duplex
Dong-Ni Yang(杨东尼), Zhen-Sheng Zhong(钟振声), Wen-Zhao Liu(刘文钊), Thitima Rujiralai, Jie Ma(马杰). Chin. Phys. B, 2019, 28(6): 068701.
[7] Boundary scheme for lattice Boltzmann modeling of micro-scale gas flow in organic-rich pores considering surface diffusion
Hong Zuo(左鸿), Shou-Chun Deng(邓守春), Hai-Bo Li(李海波). Chin. Phys. B, 2019, 28(3): 030202.
[8] Effects of proton irradiation at different incident angles on InAlAs/InGaAs InP-based HEMTs
Shu-Xiang Sun(孙树祥), Zhi-Chao Wei(魏志超), Peng-Hui Xia(夏鹏辉), Wen-Bin Wang(王文斌), Zhi-Yong Duan(段智勇), Yu-Xiao Li(李玉晓), Ying-Hui Zhong(钟英辉), Peng Ding(丁芃), Zhi Jin(金智). Chin. Phys. B, 2018, 27(2): 028502.
[9] Numerical simulation of metal evaporation based on the kinetic model equation and the direct simulation Monte Carlo method
Xiaoyong Lu(卢肖勇), Xiaozhang Zhang(张小章), Zhizhong Zhang(张志忠). Chin. Phys. B, 2018, 27(12): 124702.
[10] Short-wave infrared InGaAs photodetectors and focal plane arrays
Yong-Gang Zhang(张永刚), Yi Gu(顾溢), Xiu-Mei Shao(邵秀梅), Xue Li(李雪), Hai-Mei Gong(龚海梅), Jia-Xiong Fang(方家熊). Chin. Phys. B, 2018, 27(12): 128102.
[11] Performance of dual-band short- or mid-wavelength infrared photodetectors based on InGaAsSb bulk materials and InAs/GaSb superlattices
Yao-yao Sun(孙姚耀), Yue-xi Lv(吕粤希), Xi Han(韩玺), Chun-yan Guo(郭春妍), Zhi Jiang(蒋志), Hong-yue Hao(郝宏玥), Dong-wei Jiang(蒋洞微), Guo-wei Wang(王国伟), Ying-qiang Xu(徐应强), Zhi-chuan Niu(牛智川). Chin. Phys. B, 2017, 26(9): 098506.
[12] Optimization of wide band mesa-type enhanced terahertz photoconductive antenna at 1550 nm
Jian-Xing Xu(徐建星), Jin-Lun Li(李金伦), Si-Hang Wei(魏思航), Ben Ma(马奔), Yi Zhang(张翼), Yu Zhang(张宇), Hai-Qiao Ni(倪海桥), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2017, 26(8): 088702.
[13] Molecular dynamics simulation of nanoscale surface diffusion of heterogeneous adatoms clusters
Muhammad Imran, Fayyaz Hussain, Muhammad Rashid, Muhammad Ismail, Hafeez Ullah, Yongqing Cai, M Arshad Javid, Ejaz Ahmad, S A Ahmad. Chin. Phys. B, 2016, 25(7): 076601.
[14] Surface diffuse discharge mechanism of well-aligned atmospheric pressure microplasma arrays
Ren-Wu Zhou(周仁武), Ru-Sen Zhou(周儒森), Jin-Xing Zhuang(庄金星), Jiang-Wei Li(李江炜), Mao-Dong Chen(陈茂冬), Xian-Hui Zhang(张先徽), Dong-Ping Liu(刘东平), Kostya (Ken) Ostrikov, Si-Ze Yang(杨思泽). Chin. Phys. B, 2016, 25(4): 045202.
[15] Computational investigations on polymerase actions in gene transcription and replication: Combining physical modeling and atomistic simulations
Jin Yu(喻进). Chin. Phys. B, 2016, 25(1): 018706.
No Suggested Reading articles found!