Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(2): 024211    DOI: 10.1088/1674-1056/28/2/024211
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Nonlinear behavior of the population dynamics of three-level systems in the presence of single photon absorption

Allam Srinivasa Rao
Photonic Sciences Laboratory, Physical Research Laboratory, Thaltej, Ahmedabad, Gujarat 380059, India
Abstract  

We numerically investigate the population dynamics in a single photon resonant three-level cascade and non-cascade energy level molecules at 532-nm wavelength. The time-dependent population in the energy levels in the presence of 100 ps (pico-second) and 100 ns (nano-second) laser pulses is described in the form of rate equations. We provide a brief idea of how the optical energy transfer takes place in the light-matter interaction and we also discuss the absorption as a function of pulse width and repetition rate. We also plot the z-scan transmittance curve as a function of number of excitation pulses participating in the absorption.

Keywords:  nano-second laser      pico-second laser      nonlinear absorption      z-scan  
Received:  04 November 2018      Revised:  09 December 2018      Accepted manuscript online: 
PACS:  42.62.Fi (Laser spectroscopy)  
  42.65.-k (Nonlinear optics)  
  78.20.Bh (Theory, models, and numerical simulation)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
Corresponding Authors:  Allam Srinivasa Rao     E-mail:  asvrao@prl.res.in

Cite this article: 

Allam Srinivasa Rao Nonlinear behavior of the population dynamics of three-level systems in the presence of single photon absorption 2019 Chin. Phys. B 28 024211

[1] Wei J and Xiao M 2008 J. Opt. A: Pure Appl. Opt. 10 115102
[2] Rao A S, Dar M H, Venkatramaiah N, Venkatesan R and Sharan A 2016 J. Non. Opt. Phys. Mater. 25 1650039
[3] Ryasnyansky A, Palpant B, Debrus S, Ganeev R, Stepanov A, Can N, Buchal C and Uysal S 2005 Appl. Opt. 44 2839
[4] Allam S R 2015 Laser Phys. 25 055701
[5] Pramodini S, Sudhakar Y N, SelvaKumar M and Poornesh P 2014 Laser Phys. 24 045408
[6] Chakravarthy G, Allam S R, Sharan A, Ghosh O S N, Gayathri S, Viswanath A K, Prabhakar M N and Song J I 2016 J. Non. Opt. Phys. Mater. 25 1650019
[7] Kumar R S S, Rao S V, Giribabu L and Rao D N 2007 Chem. Phys. Lett. 447 274
[8] Saripalli R K, Katturi N K, Soma V R, Bhat H L and Elizabeth S 2017 J. Appl. Phys. 122 223110
[9] Ready J F 1997 Industrial applications of lasers (Elsevier)
[10] Moore C B 2012 Chemical and biochemical applications of lasers (Elsevier)
[11] Rusak D A, Castle B C, Smith B W and Winefordner J D F 1997 Cri. Rev. Anal. Chem. 1 257
[12] Sutherland R L 2003 Handbook of nonlinear optics, Chapters 9 and 10 (CRC Press)
[13] Allam S R, Dar M H, Venkatramaiah N, Venkatesan R and Sharan A 2015 IOP Conf. Ser. Mater. Sci. Eng. 73 012023
[14] Abrams R L and Lind R C 1978 Opt. Lett. 2 94
[15] Ulman M, Bailey D W, Acioli L H, Vallee F G, Stanton C J, Ippen E P and Fujimoto J G 1993 Phys. Rev. B 47 10267
[16] Haran G, Sun W D, Wynne K and Hochstrasser R M 1997 Chem. Phys. Lett. 274 365
[17] Ershov A E, Gavrilyuk A P, Karpov S V and Semina P N 2015 Chin. Phys. B 24 047804
[18] Yang C, Gu C L, Liu Y, Wang C, Li J and Li W X 2018 Acta Phys. Sin. 67 094206 (in Chinese)
[19] Mu H, Wang Z, Yuan J, Xiao S, Chen C, Chen Y, Chen Y, Song J, Wang Y, Xue Y and Zhang H 2015 ACS Photon. 2 832
[20] Ponraj J S, Xu Z Q, Dhanabalan S C, Mu H, Wang Y, Yuan J, Li P, Thakur S, Ashrafi M, Mccoubrey K and Zhang Y 2016 Nanotechnol. 27 462001
[21] Lin Y G, Wang Q, Li Y, Meng F, Lin B K, Zang E J, Sun Z, Fang F, Li T C and Fang Z J 2015 Chin. Phys. Lett. 32 090601
[22] Liu C, Zhou S, Wang Y H and Hou S M 2017 Chin. Phys. B 26 113201
[23] Wei X Y, Tu Z W, Liu C, Li H L and Xu H L 2016 Chin. Phys. Lett. 33 054201
[24] Xiang L, Zhang X, Zhang J W, Ning Y Q, Hofmann W and Wang L J 2017 Chin. Phys. B 26 074209
[25] Sheik-Bahae M, Said A A and Van Stryland E W 1989 Opt. Lett. 14 955
[26] Rao A S 2018 Optik 158 652
[27] Vijayakumar S, Adithya A, Sharafudeen K N, Balakrishna K and Chandrasekharan K 2010 J. Mod. Opt. 57 670
[28] Rao S 2018 Optik 157 900
[29] Krishna M B M, Venkatramaiah N, Venkatesan R and Rao D N 2012 J. Mater. Chem. 22 3059
[30] Allam S R and Sharan A 2017 J. Opt. 46 486
[31] Sharma K K, Rao K D and Kumar G R 1994 Opt. Quantum Electron. 26 1
[32] De Boni L, Andrade A A, Correa D S, Balogh D T, Zilio S C, Misoguti L and Mendonca C R 2004 J. Phys. Chem. B 108 5221
[33] Krishna M B M, Kumar V P, Venkatramaiah N, Venkatesan R and Rao D N 2011 Appl. Phys. Lett. 98 081106
[34] Barbosa N N M, Oliveira S L, Misoguti L, Mendonça C R, Gonçalves P J, Borissevitch I E, Dinelli L R, Romualdo L L, Batista A A, and Zilio S C 2006 J. Appl. Phys. 99 123103
[35] Rao A S 2019 Optik 179 222
[36] Liu H, Jiang K L, Wang J Q, Xiong Z X, He L X and Lu B L 2018 Chin. Phys. B 27 053201
[37] Su N, Li P X, Xiao K, Wang X X, Liu J G, Shao Y and Su M 2017 Chin. Phys. B 26 074210
[38] Wang Q, Duan J, Qi X H, Zhang Y and Chen X Z 2015 Chin. Phys. Lett. 32 054206
[39] Zhou Q, Chang P Y, Liu Z Z, Zhang X G, Zhu C W and Chen J B 2017 Chin. Phys. Lett. 34 034208
[40] Luo W and Duan C X 2016 Chin. Phys. Lett. 33 024207
[41] Sun M G, Ma H L, Liu Q, Cao Z S, Wang G S, Liu K, Huang Y B, Gao X M and Rao R Z 2018 Acta Phys. Sin. 67 064206 (in Chinese)
[42] Woutersen A, Emmerichs U and Bakker H J 1997 Science 278 658
[43] Joffre M, Hulin D, Migus A, Antonetti A, á la Guillaume C, Peyghambarian N, Lindberg M and Koch S W 1988 Opt. Lett. 13 276
[44] Jia M Y, Zhao G, Zhou Y T, Liu J X, Guo S J, Wu Y Q, Ma W G, Zhang L, Dong L, Yin W B, Xiao L T and Jia S T 2018 Acta Phys. Sin. 67 104207 (in Chinese)
[45] Kang P, Sun Y, Wang J, Liu A W and Hu S M 2018 Acta Phys. Sin. 67 104206 (in Chinese)
[46] Ma J, Lu S, Guo Z, Xu X, Zhang H, Tang D and Fan D 2015 Opt. Express 23 22643
[1] Optical nonlinearities of tetracarbonyl-chromium triphenyl phosphine complex
M D Zidan, A W Allaf, A Allahham, A AL-Zier. Chin. Phys. B, 2017, 26(4): 044205.
[2] Role of the aperture in Z-scan experiments: A parametric study
M. R. Rashidian Vaziri. Chin. Phys. B, 2015, 24(11): 114206.
[3] Nonlinear optical characterization of phosphate glasses based on ZnO using the Z-scan technique
Masoumeh Shokati Mojdehi, Wan Mahmood Mat Yunus, Khor Shing Fhan, Zainal Abidin Talib, N. Tamchek. Chin. Phys. B, 2013, 22(11): 117802.
[4] Size-dependent nonlinear absorption and refraction of Ag nanoparticles excited by femtosecond lasers
Fan Guang-Hua(范光华), Qu Shi-Liang(曲士良), Guo Zhong-Yi(郭忠义), Wang Qiang(王强), and Li Zhong-Guo(李中国) . Chin. Phys. B, 2012, 21(4): 047804.
[5] Z-scan analysis of high-order nonlinear refraction effect induced by using elliptic Gaussian beam
Guo Shi-Fang(郭世方) and Tian Qiang(田强). Chin. Phys. B, 2010, 19(6): 067802.
[6] Enhanced optical nonlinear absorption of graded Au--TiO2 composite films
Liu Li(刘莉) and Su Xiong-Rui(苏雄睿) . Chin. Phys. B, 2008, 17(6): 2170-2174.
[7] Orientation-enhanced nonlinear optical properties and phase-conjugate reflective system of a novel Azobenzene doped polymer film
Xie Ru-Sheng(谢茹胜), Fan Wen-Bin(范文彬), Lu Ming(陆明), and Zhao You-Yuan(赵有源) . Chin. Phys. B, 2007, 16(9): 2725-2730.
[8] Nonlinear optical properties in double-sided nonlinear media with Z-scan technique based on the Huygens--Fresnel principle
Ouyang Qiu-Yun(欧阳秋云), Zhang Xue-Ru(张学如), Jiang Li(蒋礼), Chang Qing(常青), Wang Yu-Xiao(王玉晓), and Song Ying-Lin(宋瑛林). Chin. Phys. B, 2006, 15(8): 1810-1814.
[9] Large third-order optical nonlinearity in Au nanometre particle doped BaTiO3 composite films near the resonant frequency
Wang Wei-Tian (王伟田), Yang Guang (杨光), Chen Zheng-Hao (陈正豪), Zhou Yue-Liang (周岳亮), Lü Hui-Bin (吕惠宾), Yang Guo-Zhen (杨国桢). Chin. Phys. B, 2002, 11(12): 1324-1327.
No Suggested Reading articles found!