ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Nonlinear behavior of the population dynamics of three-level systems in the presence of single photon absorption |
Allam Srinivasa Rao |
Photonic Sciences Laboratory, Physical Research Laboratory, Thaltej, Ahmedabad, Gujarat 380059, India |
|
|
Abstract We numerically investigate the population dynamics in a single photon resonant three-level cascade and non-cascade energy level molecules at 532-nm wavelength. The time-dependent population in the energy levels in the presence of 100 ps (pico-second) and 100 ns (nano-second) laser pulses is described in the form of rate equations. We provide a brief idea of how the optical energy transfer takes place in the light-matter interaction and we also discuss the absorption as a function of pulse width and repetition rate. We also plot the z-scan transmittance curve as a function of number of excitation pulses participating in the absorption.
|
Received: 04 November 2018
Revised: 09 December 2018
Accepted manuscript online:
|
PACS:
|
42.62.Fi
|
(Laser spectroscopy)
|
|
42.65.-k
|
(Nonlinear optics)
|
|
78.20.Bh
|
(Theory, models, and numerical simulation)
|
|
78.20.Ci
|
(Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))
|
|
Corresponding Authors:
Allam Srinivasa Rao
E-mail: asvrao@prl.res.in
|
Cite this article:
Allam Srinivasa Rao Nonlinear behavior of the population dynamics of three-level systems in the presence of single photon absorption 2019 Chin. Phys. B 28 024211
|
[1] |
Wei J and Xiao M 2008 J. Opt. A: Pure Appl. Opt. 10 115102
|
[2] |
Rao A S, Dar M H, Venkatramaiah N, Venkatesan R and Sharan A 2016 J. Non. Opt. Phys. Mater. 25 1650039
|
[3] |
Ryasnyansky A, Palpant B, Debrus S, Ganeev R, Stepanov A, Can N, Buchal C and Uysal S 2005 Appl. Opt. 44 2839
|
[4] |
Allam S R 2015 Laser Phys. 25 055701
|
[5] |
Pramodini S, Sudhakar Y N, SelvaKumar M and Poornesh P 2014 Laser Phys. 24 045408
|
[6] |
Chakravarthy G, Allam S R, Sharan A, Ghosh O S N, Gayathri S, Viswanath A K, Prabhakar M N and Song J I 2016 J. Non. Opt. Phys. Mater. 25 1650019
|
[7] |
Kumar R S S, Rao S V, Giribabu L and Rao D N 2007 Chem. Phys. Lett. 447 274
|
[8] |
Saripalli R K, Katturi N K, Soma V R, Bhat H L and Elizabeth S 2017 J. Appl. Phys. 122 223110
|
[9] |
Ready J F 1997 Industrial applications of lasers (Elsevier)
|
[10] |
Moore C B 2012 Chemical and biochemical applications of lasers (Elsevier)
|
[11] |
Rusak D A, Castle B C, Smith B W and Winefordner J D F 1997 Cri. Rev. Anal. Chem. 1 257
|
[12] |
Sutherland R L 2003 Handbook of nonlinear optics, Chapters 9 and 10 (CRC Press)
|
[13] |
Allam S R, Dar M H, Venkatramaiah N, Venkatesan R and Sharan A 2015 IOP Conf. Ser. Mater. Sci. Eng. 73 012023
|
[14] |
Abrams R L and Lind R C 1978 Opt. Lett. 2 94
|
[15] |
Ulman M, Bailey D W, Acioli L H, Vallee F G, Stanton C J, Ippen E P and Fujimoto J G 1993 Phys. Rev. B 47 10267
|
[16] |
Haran G, Sun W D, Wynne K and Hochstrasser R M 1997 Chem. Phys. Lett. 274 365
|
[17] |
Ershov A E, Gavrilyuk A P, Karpov S V and Semina P N 2015 Chin. Phys. B 24 047804
|
[18] |
Yang C, Gu C L, Liu Y, Wang C, Li J and Li W X 2018 Acta Phys. Sin. 67 094206 (in Chinese)
|
[19] |
Mu H, Wang Z, Yuan J, Xiao S, Chen C, Chen Y, Chen Y, Song J, Wang Y, Xue Y and Zhang H 2015 ACS Photon. 2 832
|
[20] |
Ponraj J S, Xu Z Q, Dhanabalan S C, Mu H, Wang Y, Yuan J, Li P, Thakur S, Ashrafi M, Mccoubrey K and Zhang Y 2016 Nanotechnol. 27 462001
|
[21] |
Lin Y G, Wang Q, Li Y, Meng F, Lin B K, Zang E J, Sun Z, Fang F, Li T C and Fang Z J 2015 Chin. Phys. Lett. 32 090601
|
[22] |
Liu C, Zhou S, Wang Y H and Hou S M 2017 Chin. Phys. B 26 113201
|
[23] |
Wei X Y, Tu Z W, Liu C, Li H L and Xu H L 2016 Chin. Phys. Lett. 33 054201
|
[24] |
Xiang L, Zhang X, Zhang J W, Ning Y Q, Hofmann W and Wang L J 2017 Chin. Phys. B 26 074209
|
[25] |
Sheik-Bahae M, Said A A and Van Stryland E W 1989 Opt. Lett. 14 955
|
[26] |
Rao A S 2018 Optik 158 652
|
[27] |
Vijayakumar S, Adithya A, Sharafudeen K N, Balakrishna K and Chandrasekharan K 2010 J. Mod. Opt. 57 670
|
[28] |
Rao S 2018 Optik 157 900
|
[29] |
Krishna M B M, Venkatramaiah N, Venkatesan R and Rao D N 2012 J. Mater. Chem. 22 3059
|
[30] |
Allam S R and Sharan A 2017 J. Opt. 46 486
|
[31] |
Sharma K K, Rao K D and Kumar G R 1994 Opt. Quantum Electron. 26 1
|
[32] |
De Boni L, Andrade A A, Correa D S, Balogh D T, Zilio S C, Misoguti L and Mendonca C R 2004 J. Phys. Chem. B 108 5221
|
[33] |
Krishna M B M, Kumar V P, Venkatramaiah N, Venkatesan R and Rao D N 2011 Appl. Phys. Lett. 98 081106
|
[34] |
Barbosa N N M, Oliveira S L, Misoguti L, Mendonça C R, Gonçalves P J, Borissevitch I E, Dinelli L R, Romualdo L L, Batista A A, and Zilio S C 2006 J. Appl. Phys. 99 123103
|
[35] |
Rao A S 2019 Optik 179 222
|
[36] |
Liu H, Jiang K L, Wang J Q, Xiong Z X, He L X and Lu B L 2018 Chin. Phys. B 27 053201
|
[37] |
Su N, Li P X, Xiao K, Wang X X, Liu J G, Shao Y and Su M 2017 Chin. Phys. B 26 074210
|
[38] |
Wang Q, Duan J, Qi X H, Zhang Y and Chen X Z 2015 Chin. Phys. Lett. 32 054206
|
[39] |
Zhou Q, Chang P Y, Liu Z Z, Zhang X G, Zhu C W and Chen J B 2017 Chin. Phys. Lett. 34 034208
|
[40] |
Luo W and Duan C X 2016 Chin. Phys. Lett. 33 024207
|
[41] |
Sun M G, Ma H L, Liu Q, Cao Z S, Wang G S, Liu K, Huang Y B, Gao X M and Rao R Z 2018 Acta Phys. Sin. 67 064206 (in Chinese)
|
[42] |
Woutersen A, Emmerichs U and Bakker H J 1997 Science 278 658
|
[43] |
Joffre M, Hulin D, Migus A, Antonetti A, á la Guillaume C, Peyghambarian N, Lindberg M and Koch S W 1988 Opt. Lett. 13 276
|
[44] |
Jia M Y, Zhao G, Zhou Y T, Liu J X, Guo S J, Wu Y Q, Ma W G, Zhang L, Dong L, Yin W B, Xiao L T and Jia S T 2018 Acta Phys. Sin. 67 104207 (in Chinese)
|
[45] |
Kang P, Sun Y, Wang J, Liu A W and Hu S M 2018 Acta Phys. Sin. 67 104206 (in Chinese)
|
[46] |
Ma J, Lu S, Guo Z, Xu X, Zhang H, Tang D and Fan D 2015 Opt. Express 23 22643
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|