Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(4): 047305    DOI: 10.1088/1674-1056/21/4/047305
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

The effects of post-thermal annealing on the optical parameters of indium-doped ZnO thin films

Peng Li-Ping(彭丽萍)a)b)†, Fang Liang(方亮)b)‡, Wu Wei-Dong(吴卫东)a), Wang Xue-Min(王雪敏)a), and Li Li(李丽)c)
a. Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China;
b. Department of Applied Physics, Chongqing University, Chongqing 400030, China;
c. College of Mathematics and Physics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
Abstract  Indium-doped ZnO thin films are deposited on quartz glass slides by RF magnetron sputtering at ambient temperature. The as-deposited films are annealed at different temperatures from 400 ℃ to 800 ℃ in air for 1 h. Transmittance spectra are used to determine the optical parameters and the thicknesses of the films before and after annealing using a nonlinear programming method, and the effects of the annealing temperatures on the optical parameters and the thickness are investigated. The optical band gap is determined from the absorption coefficient. The calculated results show that the film thickness and optical parameters both increase first and then decrease with increasing annealing temperature from 400 ℃ to 800 ℃. The band gap of the as-deposited ZnO:In thin film is 3.28 eV, and it decreases to 3.17 eV after annealing at 400 ℃. Then the band gap increases from 3.17 eV to 3.23 eV with increasing annealing temperature from 400 ℃ to 800 ℃.
Keywords:  ZnO thin films      optical constants      annealing      transmittance spectra  
Received:  05 June 2011      Revised:  10 August 2011      Accepted manuscript online: 
PACS:  73.61.Ga (II-VI semiconductors)  
  81.15.Cd (Deposition by sputtering)  
  68.55.ag (Semiconductors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 50942021 and 11075314) and the Fundamental Research Fund for the Central Universities (Grant No. CDJXS10102207).
Corresponding Authors:  Peng Li-Ping,pengliping2005@yahoo.cn;Fang Liang,fangliangcqu@yahoo.com.cn     E-mail:  pengliping2005@yahoo.cn;fangliangcqu@yahoo.com.cn

Cite this article: 

Peng Li-Ping(彭丽萍), Fang Liang(方亮), Wu Wei-Dong(吴卫东), Wang Xue-Min(王雪敏), and Li Li(李丽) The effects of post-thermal annealing on the optical parameters of indium-doped ZnO thin films 2012 Chin. Phys. B 21 047305

[1] Pearson S J, Orton D P N, Ip K, Hoe Y W and Steiner T 2005 Prog. Mater. Sci. 50 293
[2] Yao Z G, Zhang X Q, Shang H K, Teng X Y, Wang Y S and Huang S H 2005 Chin. Phys. 14 120
[3] Park J H, Ahn K J, Na S I and Kim H K 2011 Sol. Energy Mater. Sol. Cells 95 657.
[4] Zhang H F, Liu R J, Liu H F, Lei C X, Feng D T and Yuan C K 2010 Matter. Lett. 64 2112
[5] Xue S W, Zu X T, Su H Q, Xiang X, Deng H and Yang C Y 2007 Chin. Phys. 16 1119
[6] Park J B, Park S H and Sang P K 2010 J. Phys. Chem. Solids 71 669
[7] Park Y R, Kim E K, Jung D, Park T S and Kim Y S 2008 Appl. Phys. Sci. 254 2250
[8] Chambouleyron I, Martinez J M, Moretti A C and Mulato M 1998 Thin Solid Films 317 133
[9] Swanepoel R 1983 J. Phys. E 16 1214
[10] Swanepoel R 1984 J. Phys. E 17 896
[11] Birgin E G, Chambouleyron I and Martinez J M 1999 J. Comp. Physiol. 151 862
[12] Mulato M, Chambouleyron I, Birgin E G and Martinez J M 2000 Appl. Phys. Lett. 77 2133
[13] Huang B, Li J, Wu Y B, Guo D H and Wu S T 2008 Mater. Lett. 62 1316
[14] Yang J H, Gao M, Zhang Y J, Yang L L, Lang J H, Liu Y Q and Fan H G 2008 Superlattice Microst. 44 137
[15] Peng L P, Fang L, Yang X F and Huang Q L 2009 J. Alloys. Compd. 484 575
[16] Peng L P, Fang L, Yang X F, Ruan H B, Huang Q L and Wu F Int. J. Mod. Phys. B in press
[17] Peng L P, Fang L, Yang X F, Ruan H B and Li Y J 2009 Physica E 41 1819
[18] Li Q H, Zhu D L, Liu W J, Liu Y and Ma X C 2008 Appl. Surf. Sci. 254 2922
[19] Li H, Xie E Q, Qiao M, Pan X J and Zhang Y Z 2007 J. Electron. Mater. 36 1219
[20] Xue S W, Zu X T, Zhou W L, Deng H X, Xiang X, Zhang L and Deng H 2008 J. Alloys Compd. 448 21
[1] Phosphorus diffusion and activation in fluorine co-implanted germanium after excimer laser annealing
Chen Wang(王尘), Wei-Hang Fan(范伟航), Yi-Hong Xu(许怡红), Yu-Chao Zhang(张宇超), Hui-Chen Fan(范慧晨), Cheng Li(李成), and Song-Yan Cheng(陈松岩). Chin. Phys. B, 2022, 31(9): 098503.
[2] Introducing voids around the interlayer of AlN by high temperature annealing
Jianwei Ben(贲建伟), Jiangliu Luo(罗江流), Zhichen Lin(林之晨), Xiaojuan Sun(孙晓娟), Xinke Liu(刘新科), and Xiaohua Li(黎晓华). Chin. Phys. B, 2022, 31(7): 076104.
[3] Construction and mechanism analysis on nanoscale thermal cloak by in-situ annealing silicon carbide film
Jian Zhang(张健), Hao-Chun Zhang(张昊春), Zi-Liang Huang(黄子亮), Wen-Bo Sun(孙文博), and Yi-Yi Li(李依依). Chin. Phys. B, 2022, 31(1): 014402.
[4] Protection of isolated and active regions in AlGaN/GaN HEMTs using selective laser annealing
Mingchen Hou(侯明辰), Gang Xie(谢刚), Qing Guo(郭清), and Kuang Sheng(盛况). Chin. Phys. B, 2021, 30(9): 097302.
[5] In-situ TEM observation of the evolution of helium bubbles in Mo during He+ irradiation and post-irradiation annealing
Yi-Peng Li(李奕鹏), Guang Ran(冉广), Xin-Yi Liu(刘歆翌), Xi Qiu(邱玺), Qing Han(韩晴), Wen-Jie Li(李文杰), and Yi-Jia Guo(郭熠佳). Chin. Phys. B, 2021, 30(8): 086109.
[6] Impact of O2 post oxidation annealing on the reliability of SiC/SiO2 MOS capacitors
Peng Liu(刘鹏), Ji-Long Hao(郝继龙), Sheng-Kai Wang(王盛凯), Nan-Nan You(尤楠楠), Qin-Yu Hu(胡钦宇), Qian Zhang(张倩), Yun Bai(白云), and Xin-Yu Liu(刘新宇). Chin. Phys. B, 2021, 30(7): 077303.
[7] Fabrication and characterization of Al-Mn superconducting films for applications in TES bolometers
Qing Yu(余晴), Yi-Fei Zhang(张翼飞), Chang-Hao Zhao(赵昌昊), Kai-Yong He(何楷泳), Ru-Tian Huang(黄汝田), Yong-Cheng He(何永成), Xin-Yu Wu(吴歆宇), Jian-She Liu(刘建设), and Wei Chen(陈炜). Chin. Phys. B, 2021, 30(7): 077402.
[8] Effects of post-annealing on crystalline and transport properties of Bi2Te3 thin films
Qi-Xun Guo(郭奇勋), Zhong-Xu Ren(任中旭), Yi-Ya Huang(黄意雅), Zhi-Chao Zheng(郑志超), Xue-Min Wang(王学敏), Wei He(何为), Zhen-Dong Zhu(朱振东), and Jiao Teng(滕蛟). Chin. Phys. B, 2021, 30(6): 067307.
[9] Understanding the synergistic effect of mixed solvent annealing on perovskite film formation
Kun Qian(钱昆), Yu Li(李渝), Jingnan Song(宋静楠), Jazib Ali, Ming Zhang(张明), Lei Zhu(朱磊), Hong Ding(丁虹), Junzhe Zhan(詹俊哲), and Wei Feng(冯威). Chin. Phys. B, 2021, 30(6): 068103.
[10] Quantum annealing for semi-supervised learning
Yu-Lin Zheng(郑玉鳞), Wen Zhang(张文), Cheng Zhou(周诚), and Wei Geng(耿巍). Chin. Phys. B, 2021, 30(4): 040306.
[11] Design and fabrication of GeAsSeS chalcogenide waveguides with thermal annealing
Limeng Zhang(张李萌), Jinbo Chen(陈锦波), Jierong Gu(顾杰荣), Yixiao Gao(高一骁), Xiang Shen(沈祥), Yimin Chen(陈益敏), and Tiefeng Xu(徐铁峰). Chin. Phys. B, 2021, 30(3): 034210.
[12] Characterization of low-resistance ohmic contacts to heavily carbon-doped n-type InGaAsBi films treated by rapid thermal annealing
Shu-Xing Zhou(周书星), Li-Kun Ai(艾立鹍), Ming Qi(齐鸣), An-Huai Xu(徐安怀), Jia-Sheng Yan(颜家圣), Shu-Sen Li(李树森), and Zhi Jin(金智). Chin. Phys. B, 2021, 30(2): 027304.
[13] Preparation of graphene on SiC by laser-accelerated pulsed ion beams
Danqing Zhou(周丹晴), Dongyu Li(李东彧), Yuhan Chen(陈钰焓), Minjian Wu(吴旻剑), Tong Yang(杨童), Hao Cheng(程浩), Yuze Li(李昱泽), Yi Chen(陈艺), Yue Li(李越), Yixing Geng(耿易星), Yanying Zhao(赵研英), Chen Lin(林晨), Xueqing Yan(颜学庆), and Ziqiang Zhao(赵子强). Chin. Phys. B, 2021, 30(11): 116106.
[14] Optically tuned dielectric characteristics of SrTiO3/Si thin film in the terahertz range
Bin Zou(邹斌), Qing-Qing Li(李晴晴), Yu-Ping Yang(杨玉平), and Hai-Zhong Guo(郭海中). Chin. Phys. B, 2021, 30(10): 107802.
[15] Erratum to "Fabrication of Tl2Ba2CaCu2O8 superconducting films without thallium pellets"
Teng-Da Xu(徐腾达), Jian Xing(邢建), Li-Tian Wang(王荔田), Jin-Li Zhang(张金利), Sheng-Hui Zhao(赵生辉), Yang Xiong(熊阳), Xin-Jie Zhao(赵新杰), Lu Ji(季鲁), Xu Zhang(张旭), and Ming He(何明). Chin. Phys. B, 2021, 30(1): 019901.
No Suggested Reading articles found!