Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(4): 046501    DOI: 10.1088/1674-1056/21/4/046501
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

The phase transition, hygroscopicity, and thermal expansion properties of Yb2-xAlxMo3O12

Li Qiu-Jie(李求杰), Yuan Bao-He(袁保合), Song Wen-Bo(宋文博), Liang Er-Jun(梁二军), and Yuan Bin(袁斌)
School of Physical Science & Engineering and Key Laboratory of Materials Physics of Ministry of Education of China, Zhenghou University, Zhengzhou 450052, China
Abstract  Materials with the formula Yb2-xAlxMo3O12 (x=0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 0.9, 1.0, 1.1, 1.3, 1.5, and 1.8) were synthesized and their structures, phase transitions, and hygroscopicity investigated using X-ray powder diffraction, Raman spectroscopy, and thermal analysis. It is shown that Yb2-xAlxMo3O12 solid solutions crystallize in a single monoclinic phase for 1.7≤ x≤ 2.0 and in a single orthorhombic phase for $0.1\le x\le 0.4$, and exhibit the characteristics of both monoclinic and orthorhombic structures outside these compositional ranges. The monoclinic to orthorhombic phase transition temperature of Al2Mo3O12 can be reduced by partial substitution of Al3+ by Yb3+, and the Yb2-xAlxMo3O12 (0.0< x≤ 2.0) materials are hydrated at room temperature and contain two kinds of water species. One of these interacts strongly with and hinders the motions of the polyhedra, while the other does not. The partial substitution of Al3+ for Yb3+ in Yb2Mo3O12 decreases its hygroscopicity, and the linear thermal expansion coefficients after complete removal of water species are measured to be -9.1× 10-6/K, -5.5× 10-6/K, 5.74× 10-6/K, and -9.5× 10-6/K for Yb1.8Al0.2(MoO4)3, Yb1.6Al0.4(MoO4)3, Yb0.4Al1.6(MoO4)3, and Yb0.2Al1.8(MoO4)3, respectively.
Keywords:  negative thermal expansion material      phase transition      hygrosopicity      Raman spectroscopy  
Received:  05 June 2011      Revised:  24 December 2011      Accepted manuscript online: 
PACS:  65.40.De (Thermal expansion; thermomechanical effects)  
  61.50.Ks (Crystallographic aspects of phase transformations; pressure effects)  
  82.30.Rs (Hydrogen bonding, hydrophilic effects)  
  78.30.-j (Infrared and Raman spectra)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10974183).
Corresponding Authors:  Liang Er-Jun,ejliang@zzu.edu.cn     E-mail:  ejliang@zzu.edu.cn

Cite this article: 

Li Qiu-Jie(李求杰), Yuan Bao-He(袁保合), Song Wen-Bo(宋文博), Liang Er-Jun(梁二军), and Yuan Bin(袁斌) The phase transition, hygroscopicity, and thermal expansion properties of Yb2-xAlxMo3O12 2012 Chin. Phys. B 21 046501

[1] Barrera G D, Bruno J A O, Barron T H K and Allan N L 2005 J. Phys: Condens. Matter 17 217
[2] Mittal R and Chaplot S L 2006 Prog. Mat. Sci. 51 211
[3] Grima J N, Zammit V and Gatt R 2006 Xjenza. 11 17
[4] Miller W, Smith C W, Mackenzie D S and Evans K E 2009 J. Mater. Sci. 44 5441
[5] Liang E J 2010 Recent Patents Mater. Sci. 3 106
[6] Evans J S O, Mary T A and Sleight A W 1998 J. Solid State Chem. 137 148
[7] Sleight A W 1998 Ann. Rev. Mater. Sci. 28 29
[8] Marinkovic B A, Jardim P M, de Avillez R R and Rizzo F 2005 Solid State Sci. 7 1377
[9] Sumithra S and Umarji A M 2006 Solid State Sci. 8 1453
[10] Evans J S O, Mary T A and Sleight A W 1997 J. Solid State Chem. 133 580
[11] Mary T A and Sleight A W 1999 J. Mater. Res. 14 912
[12] Liang E J, Huo H L,Wang J P and Chao M J 2008 J. Phys. Chem. C 112 6577
[13] Sumithra S and Umarji A M 2005 Mater. Res. Bull. 40 167
[14] Liu F S, Chen X P, Xie H X, Ao W Q and Li J Q 2010 Acta Phys. Sin. 59 3350 (in Chinese)
[15] Sumithra S, Tyagi A K and Umarji A M 2005 Mater. Sci. Eng. B 116 14
[16] Nassau K and Levinstein H J 1965 Phys. Chem. Solids 36 1805
[17] Tyagi A K, Achary S N and Mathews M D 2002 J. Alloys Compd. 339 207
[18] Sleight A W and Brixner L H 1973 J. Solid State Chem. 7 172
[19] Evans J S O and Mary T A 2000 Int. J. Inorg. Mater. 2 143
[20] Sumithra S and Umarji A M 2004 Solid State Sci. 6 1313
[21] Wu M M, Xiao X L, Hu Z B, Liu Y T and Chen D F 2009 Solid State Sci. 11 325
[22] Li Z Y, Song W B and Liang E J 2011 J. Phys. Chem. C 115 17806
[23] Wang Z P, Song W B, Zhao Y, Jiang Y J and Liang E J 2011 The Journal of Light Scattering 23 250
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[3] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[4] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[5] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[6] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[7] In situ study of calcite-III dimorphism using dynamic diamond anvil cell
Xia Zhao(赵霞), Sheng-Hua Mei(梅升华), Zhi Zheng(郑直), Yue Gao(高悦), Jiang-Zhi Chen(陈姜智), Yue-Gao Liu(刘月高), Jian-Guo Sun(孙建国), Yan Li(李艳), and Jian-Hui Sun(孙建辉). Chin. Phys. B, 2022, 31(9): 096201.
[8] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[9] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[10] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[11] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[12] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[13] Radiation effects of electrons on multilayer FePS3 studied with laser plasma accelerator
Meng Peng(彭猛), Jun-Bo Yang(杨俊波), Hao Chen(陈浩), Bo-Yuan Li(李博源), Xu-Lei Ge(葛绪雷), Xiao-Hu Yang(杨晓虎), Guo-Bo Zhang(张国博), and Yan-Yun Ma(马燕云). Chin. Phys. B, 2022, 31(8): 086102.
[14] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[15] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
No Suggested Reading articles found!