Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(3): 030307    DOI: 10.1088/1674-1056/21/3/030307
GENERAL Prev   Next  

Efficient entanglement purification in quantum repeaters

Sheng Yu-Bo(盛宇波)a)b)c)†, Zhou Lan(周澜)d), Cheng Wei-Wen(程维文)a)b)c), Gong Long-Yan(巩龙龑)a)b)c), Zhao Sheng-Mei(赵生妹)a)c), and Zheng Bao-Yu(郑宝玉) a)c)
a. Institute of Signal Processing Transmission, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
b. College of Telecommunications & Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
c. Key Laboratory of Broadband Wireless Communication and Sensor Network Technology of Ministry of Education, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
d. Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  We present an efficient entanglement purification protocol (EPP) with controlled-not (CNOT) gates and linear optics. With the CNOT gates, our EPP can reach a higher fidelity than the conventional one. Moreover, it does not require the fidelity of the initial mixed state to satisfy F>1/2. If the initial state is not entangled, it still can be purified. With the linear optics, this protocol can get pure maximally entangled pairs with some probabilities. Meanwhile, it can be used to purify the entanglement between the atomic ensembles in distant locations. This protocol may be useful in long-distance quantum communication.
Keywords:  quantum communication      entanglement      entanglement purification      quantum repeater  
Received:  31 October 2011      Revised:  15 November 2011      Accepted manuscript online: 
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
  03.65.Ud (Entanglement and quantum nonlocality)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11104159 and 10904074), the Scientific Research Foundation of Nanjing University of Posts and Telecommunications, China (Grant No. NY211008), the University Natural Science Research Foundation of Jiangsu Province, China (Grant No. 11KJA510002), the Open Research Fund of Key Lab of Broadband Wireless Communication and Sensor Network Technology (Nanjing University of Posts and Telecommunications) of Ministry of Education, China, and the Priority Academic Program Development Fund of Jiangsu Higher Education Institutions, China.
Corresponding Authors:  Sheng Yu-Bo,shengyb@njupt.edu.cn     E-mail:  shengyb@njupt.edu.cn

Cite this article: 

Sheng Yu-Bo(盛宇波), Zhou Lan(周澜), Cheng Wei-Wen(程维文), Gong Long-Yan(巩龙龑), Zhao Sheng-Mei(赵生妹), and Zheng Bao-Yu(郑宝玉) Efficient entanglement purification in quantum repeaters 2012 Chin. Phys. B 21 030307

[1] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[2] Ekert A K 1991 Phys. Rev. Lett. 67 661
[3] Bennett C H, Brassard G and Mermin N D 1992 Phys. Rev. Lett. 68 557
[4] Deng F G and Long G L 2003 Phys. Rev. A 68 042315
[5] Long G L and Liu X S 2002 Phys. Rev. A 65 032302
[6] Li X H, Deng F G and Zhou H Y 2008 Phys. Rev. A 78 022321
[7] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145
[8] Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317
[9] Wang C, Deng F G, Li Y S, Liu X S and Long G L 2005 Phys. Rev. A 71 042305
[10] Wang C, Deng F G and Long G L 2005 Opt. Commun. 253 15
[11] Deng F G, Li X H, Li C Y, Zhou P and Zhou H Y 2006 Phys. Lett. A 359 359
[12] Gu B, Huang Y G, Fang X and Zhang C Y 2011 Chin. Phys. B 20 100309
[13] Li X H, Deng F G and Zhou H Y 2006 Phys. Rev. A 74 054302
[14] Li X H, Duan X J, Sheng Y B, Zhou H Y and Deng F G 2009 Chin. Phys. B 18 3710
[15] Yang J, Wang C and Zhang R 2010 Chin. Phys. B 19 110306
[16] Zhang X L, Zhang Y X and Wei H 2009 Chin. Phys. B 18 435
[17] Liu W J, Chen H W, Ma T H, Li Z Q, Liu Z H and Hu W B 2009 Chin. Phys. B 18 4105
[18] Man Z X, Zhang Z J and Li Y 2005 Chin. Phys. Lett. 22 18
[19] Yan F L and Zhang X 2004 Euro. Phys. J. B 41 75
[20] Gao T, Yan F L and Wang Z X 2005 Chin. Phys. 14 893
[21] Gao T, Yan F L and Wang Z X 2005 J. Phys. A 38 5761
[22] Gao T, Yan F L and Wang Z X 2005 Int. J. Mod. Phys. C 16 1293
[22] Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[24] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
[25] Liu X S, Long G L, Tong D M and Feng L 2002 Phys. Rev. A 65 022304
[26] Hillery M, Bužek V and Berthiaume A 1999 Phys. Rev. A 59 1829
[27] Karlsson A, Koashi M and Imoto N 1999 Phys. Rev. A 59 162
[28] Xiao L, Long G L, Deng F G and Pan J W 2004 Phys. Rev. A 69 052307
[29] Deng F G, Li X H and Zhou H Y 2008 Phys. Lett. A 372 1957
[30] Cleve R, Gottesman D and Lo H K 1999 Phys. Rev. Lett. 83 648
[31] Lance A M, Symul T, Bowen W P, Sanders B C and Lam P K 2004 Phys. Rev. Lett. 92 177903
[32] Deng F G, Li X H, Li C Y, Zhou P and Zhou H Y 2005 Phys. Rev. A 72 044301
[33] Deng F G, Li X H, Li C Y, Zhou P and Zhou H Y 2006 Eur. Phys. J. D 39 459
[34] Li X H, Zhou P, Li C Y, Zhou H Y and Deng F G 2006 J. Phys. B 39 1975
[35] Sheng Y B, Deng F G and Zhou H Y 2008 Eur. Phys. J. D 48 279
[36] Wang T J, Zhou H Y and Deng F G 2008 Physica A 387 4716
[37] Karlsson A and Bourennane M 1998 Phys. Rev. A 58 4394
[38] Deng F G, Li C Y, Li Y S, Zhou H Y and Wang Y 2005 Phys. Rev. A 72 022338
[39] Briegel H J, D黵 W, Cirac J I and Zoller P 1998 Phys. Rev. Lett. 81 5932
[40] D黵 W, Briegel H J, Cirac J I and P Zoller 1998 Phys. Rev. A 59 169
[41] Zukowski M, Zeilinger A, Horne M A and Ekert A K 1993 Phys. Rev. Lett. 71 4278
[42] Bose S, Vedral V and Knight P L 1998 Phys. Rev. A 57 822
[43] Bennett C H, Brassard G, Popescu S, Schumacher B, Smolin J A and Wootters W K 1996 Phys. Rev. Lett. 76 722
[44] Duan L M, Lukin M D, Cirac J T and Zoller P 2001 Nature 414 413
[45] Sangouard N, Simon C, Min? ř J, Zbinden H, de Riedmatten H and Gisin N 2007 Phys. Rev. A 76 050301(R)
[46] Sangouard N, Simon C, Zhao B, Chen Y A, de Riedmatten H and Pan J W 2008 Phys. Rev. A 77 062301
[47] Simon C, de Riedmatten H, Afzelius M, Sangouard N, Zbinden H and Gisin N 2007 Phys. Rev. Lett. 98 010503
[48] Yuan Z S, Chen Y A, Zhao B, Chen S, Schmiedmayer J and Pan J W 2008 Nature 454 1098
[49] Lin G W, Zou X B, Lin X M and Guo G C 2009 Phys. Rev. A 79 042332
[50] Yu F and Xiong S J 2009 Phys. Rev. A 79 052340
[51] Yin Z Q, Zhao Y B, Yang Y, Han Z F and Guo G C 2009 Phys. Rev. A 79 044302
[52] Gao M, Liang L M, Li C Z and Wang X B 2009 Phys. Rev. A 79 042301
[53] Choi K S, Deng H, Laurat J and Kimble H J 2008 Nature 452 67
[54] Zhao B, Chen Z B, Chen Y A, Schmiedmayer J and Pan J W 2007 Phys. Rev. Lett. 98 240502
[55] Chen Z B, Zhao B, Chen Y A, Schmiedmayer J and Pan J W 2007 Phys. Rev. A 96 022309
[56] Chou C W, de Riedmatten H, Felinto D, Polyakov S V, van Enk S J and Kimble H J 2005 Nature 438 828
[57] Chou C W, Laurat J, Deng H, Choi K S, de Riedmatten H, Felinto D and Kimble H J 2007 Science 316 1316
[58] van Loock P, Ladd T D, Sanaka K, Yamaguchi F, Nemoto K, Munro W J and Yamamoto Y 2006 Phys. Rev. Lett. 96 240501
[59] Munro W J, Van Meter R, Louis S G R and Nemoto K 2008 Phys. Rev. Lett. 101 040502
[60] Deutsch D, Ekert A, Jozsa R, Macchiavello C, Popescu S and Sanpera A 1996 Phys. Rev. Lett. 77 2818
[61] Pan J W, Simon C and Zellinger A 2001 Nature % 410 1067
[62] Pan J W, Gasparonl S, Ursin R, Weihs G and Zellinger A 2003 Nature 423 417
[63] Simon C and Pan J W 2002 Phys. Rev. Lett. 89 257901
[64] Murao M, Plenio M B, Popescu S, Vedral V and Knight P L 1998 Phys. Rev. A 57 R4075
[65] Cheong Y W, Lee S W, Lee J and Lee H W 2007 Phys. Rev. A 76 042314
[66] Sheng Y B, Deng F G and Zhou H Y 2008 Phys. Rev. A 77 042308
[67] Sheng Y B, Deng F G and Zhou H Y 2010 Quantum Inform. Comput. 10 272
[68] Sheng Y B, Deng F G and Zhou H Y 2009 Eur. Phys. J. D 55 235
[69] Xiao L, Wang C, Zhang W, Huang Y D, Peng J D and Long G L 2008 Phys. Rev. A 77 042315
[70] Wang C, Zhang Y and Jin G S 2011 Phys. Rev. A 84 032307
[71] Wang C, Zhang Y and Jin G S 2011 Quantum Inform. Comput. 11 988
[72] Sheng Y B, Deng F G and Zhou H Y 2010 Phys. Rev. A 81 032307
[73] Sheng Y B and Deng F G 2010 Phys. Rev. A 82 044305
[74] Li X H 2010 Phys. Rev. A 82 044304
[75] Deng F G 2011 Phys. Rev. A 83 062316
[76] Deng F G 2011 Phys. Rev. A 84 052312
[77] Sangouard N, Simon C, Coudreau T and Gisin N 2009 Phys. Rev. A 78 050301(R)
[78] Sheng Y B, Deng F G and Long G L 2011 Phys. Lett. A 375 396
[79] Gu B, Chen Y L, Zhang C Y and Huang Y G 2010 Chin. Phys. Lett. 27 100304
[80] Reichle R, Leibfried D, Knill E, Britton J, Blakestad R B, Jost J D, Langer C, Ozeri R, Seidelin S and Wineland D J 2006 Nature 443 838
[81] Vaidman L and Yoran N 1999 Phys. Rev. A 59 116
[82] Calsamiglia J 2002 Phys. Rev. A 65 030301(R)
[1] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[2] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[3] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[4] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[5] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[6] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[7] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[8] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[9] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[10] Effects of colored noise on the dynamics of quantum entanglement of a one-parameter qubit—qutrit system
Odette Melachio Tiokang, Fridolin Nya Tchangnwa, Jaures Diffo Tchinda,Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2022, 31(5): 050306.
[11] Entanglement spectrum of non-Abelian anyons
Ying-Hai Wu(吴英海). Chin. Phys. B, 2022, 31(3): 037302.
[12] Probabilistic resumable quantum teleportation in high dimensions
Xiang Chen(陈想), Jin-Hua Zhang(张晋华), and Fu-Lin Zhang(张福林). Chin. Phys. B, 2022, 31(3): 030302.
[13] Tetrapartite entanglement measures of generalized GHZ state in the noninertial frames
Qian Dong(董茜), R. Santana Carrillo, Guo-Hua Sun(孙国华), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(3): 030303.
[14] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
[15] Channel parameters-independent multi-hop nondestructive teleportation
Hua-Yang Li(李华阳), Yu-Zhen Wei(魏玉震), Yi Ding(丁祎), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(2): 020302.
No Suggested Reading articles found!