Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(3): 030308    DOI: 10.1088/1674-1056/21/3/030308
GENERAL Prev   Next  

Quantum communication via controlled holes in the statistical distribution of excitations in a nanoresonator coupled to a Cooper pair box

C. Valverdea)b)c)†, A.T. Avelarc), and B. Baseiac)
a. Universidade Paulista, Rod. BR 153, km 7, 74845-090 Goiânia, GO, Brazil;
b. Universidade Estadual de Goiás, Rod. BR 153, 3105, 75132-903 Anáplis, GO, Brazil;
c. Instituto de Física, Universidade Federal de Goiás, 74001-970 Goiânia, GO, Brazil
Abstract  We propose a scheme to transmit information via the statistical distribution of excitations of a nanomechanical resonator. It employs a controllable coupling between this system and a Cooper pair box. The success probability and the fidelity are calculated and compared with those obtained in an atom-field system in different regimes. Addtionaly, the scheme can also be applied to prepare low excited Fock states.
Keywords:  quantum communication      quantum state engineering      superconducting circuits      nanomechanical resonator  
Received:  14 August 2011      Revised:  31 March 2012      Accepted manuscript online: 
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  42.50.Ex (Optical implementations of quantum information processing and transfer)  
  42.50.Dv (Quantum state engineering and measurements)  
Fund: Project supported by the FAPEG (CV), INCT-IQ (ATA), and the CNPq (ATA, BB).
Corresponding Authors:  C. Valverde,valverde@ueg.br     E-mail:  valverde@ueg.br

Cite this article: 

C. Valverde, A.T. Avelar, and B. Baseia Quantum communication via controlled holes in the statistical distribution of excitations in a nanoresonator coupled to a Cooper pair box 2012 Chin. Phys. B 21 030308

[1] Bocko M F and Onofrio R 1996 Rev. Mod. Phys. 68 755
[2] Munro W J, Nemoto K, Milburn G J and Braunstein S L 2002 Phys. Rev. A 66 023819
[3] Cleland A N and Geller M R 2004 Phys. Rev. Lett. 93 070501
[4] Cleland A N and Roukes M L 1996 Appl. Phys. Lett. 69 2653
[5] Carr D W, Evoy S, Sekaric L, Craighead H G and Parpia J M 1999 Appl. Phys. Lett. 75 920
[6] Huang X M H, Zorman C A, Mehregany M and Roukes M L 2003 Nature 421 496
[7] Bose S, Jacobs K and Knight P L 1999 Phys. Rev. A 59 3204
[8] Midtvedt D, Tarakanov Y and Kinaret J 2011 Nano Lett. 11 1439
[9] Wei L F, Liu Y X, Sun C P and Nori F 2006 Phys. Rev. Lett. 97 237201
[10] Knobel R G and Cleland A N 2003 Nature 424 291
[11] LaHaye M D, Buu O, Camarota B and Schwab K C 2004 Science % 304 74
[12] Blencowe M P 2004 Phys. Rep. 395 159
[13] Armour A D, Blencowe M P and Schwab K C 2002 Phys. Rev. Lett. 88 148301
[14] Irish E K and Schwab K 2003 Phys. Rev. B 68 155311
[15] Santamore D H, Goan H S, Milburn G J and Roukes M L 2004 Phys. Rev. A 70 052105
[16] Santamore D H, Doherty A C and Cross M C 2004 Phys. Rev. B 70 144301
[17] Buks E, Segev E, Zaitsev S and Abdo B 2007 arXiv: quant-ph/0610158v4
[18] Wang Y D, Gao Y B and Sun C P 2004 Eur. Phys. J. B 40 321
[19] Peano V and Thorwart M 2004 Phys. Rev. B 70 235401
[20] Takei S, Galitski V M and Osborn K D 2011 arXiv: 1104.0029v2
[21] Liao J Q and Kuang L M 2010 arXiv: 1008.1713v1
[22] Zou X B and Mathis W 2004 Phys. Lett. A 324 484
[23] Savel関 S, Hu X and Nori F 2006 New J. Phys. 8 105
[24] Buluta I, Ashhab S and Nori F 2010 arXiv: 1002.1871v2
[25] Wang Y D, Chesi S, Loss D and Bruder C 2010 Phys. Rev. B 81 104524
[26] Tian L and Zoller P 2004 Phys. Rev. Lett. 93 266403
[27] Liao J Q, Wu Q Q and Kuang L M 2008 arXiv: 0803.4317v1
[28] Xue F, Wang Y D, Sun C P, Okamoto H, Yamaguchi H and Semba K 2007 New J. Phys. 9 35
[29] Geller M R and Cleland A N 2005 Phys. Rev. A 71 032311
[30] Tian L and Carr S M 2006 Phys. Rev. B 74 125314
[31] Martin I, Shnirman A, Tian L and Zoller P 2004 Phys. Rev. B 69 125339
[32] Zhang P, Wang Y D and Sun C P 2005 Phys. Rev. Lett. 95 097204
[33] Wilson-Rae I, Zoller P and Imamoglu A 2004 Phys. Rev. Lett. 92 075507
[34] Naik A, Buu O, LaHaye M D, Armour A D, Clerk A A, Blencowe M P and Schwab K C 2006 Nature 443 193
[35] Hopkins A, Jacobs K, Habib S and Schwab K C 2003 Phys. Rev. B 68 235328
[36] Wang Y D, Li Y, Xue F, Bruder C and Semba K 2009 Phys. Rev. B 80 144508
[37] Ouyang S H, You J Q and Nori F 2009 Phys. Rev. B 79 075304
[38] Zhang J, Liu Y X and Nori F 2009 Phys. Rev. A 79 052102
[39] Liberato S De, Lambert N and Nori F 2011 Phys. Rev. A 83 033809
[40] Hensinger W K, Utami D W, Goan H S, Schwab K C, Monroe C and Milburn G J 2005 Phys. Rev. A 72 041405(R)
[41] Sun C P, Wei L F, Liu Y and Nori F 2006 Phys. Rev. A 73 022318
[42] Milburn G J, Holmes C A, Kettle L M and Goan H S 2007 arXiv: cond-mat/0702512v1
[43] Siewert J, Brandes T and Falci G 2005 arXiv: cond-mat/0509735v1
[44] Tian L 2005 Phys. Rev. B 72 195411
[45] Valverde C, Avelar A T and Baseia B 2011 Physica A 390 4045
[46] Rabl P, Shnirman A and Zoller P 2004 Phys. Rev. B 70 205304
[47] Ruskov R, Schwab K C and Korotkov A N 2005 Phys. Rev. B 71 235407
[48] Xue F, Liu Y, Sun C P and Nori F 2007 Phys. Rev. B 76 064305
[49] Zhou X X and Mizel A 2006 Phys. Rev. Lett. 97 267201
[50] Suh J, LaHaye M D, Echternach P M, Schwab K C and Roukes M L 2010 Nano Lett. 10 3990
[51] Ragi R, Baseia B and Mizrahi S S 2000 J. Opt. B: Quan. Semiclass. Opt. 2 299
[52] Malbouisson J M C and Baseia B 2003 Phys. Scr. 67 93
[53] Valverde C, Avelar A T, Baseia B and Malbouisson J M C 2003 Phys. Lett. A 315 213
[54] Valverde C and Baseia B 2004 Int. J. Quantum Inf. 2 421
[55] Valverde C 2010 Acta Sci. Technol. 32 407
[56] You J Q and Nori F 2011 Nature 474 589
[57] Eisert J, Plenio M B, Bose S and Hartley J 2004 Phys. Rev. Lett. 93 190402
[58] Bose S and Agarwal G S 2006 New J. Phys. 8 34
[59] Blais A, Huang R S, Wallraff A, Girvin S M and Schoelkopf R J 2004 Phys. Rev. A 69 062320
[60] Moerner W E, Lenth W and Bjorklund G C 1988 Persistent Spectral Hole-Burning: Science and Applications (Berlin: Springer) p. 251
[61] Baseia B, Moussa M H Y and Bagnato V S 1998 Phys. Lett. A 240 277
[62] Malbouisson J M C and Baseia B 2001 Phys. Lett. A 290 234
[63] Avelar A T and Baseia B 2004 Opt. Comm. 239 281
[64] Avelar A T and Baseia B 2005 Phys. Rev. A 72 025801
[65] Escher B M, Avelar A T, Filho T M R and Baseia B 2004 Phys. Rev. A 70 025801
[66] Escher B M, Avelar A T and Baseia B 2005 Phys. Rev. A 72 045803
[67] Aragao A, Avelar A T, Malbouisson J M C and Baseia B 2004 Phys. Lett. A 329 284
[68] Wallraff A, Schuster D I, Blais A, Frunzio L, Majer J, Devoret M H, Girvin S M and Schoelkopf R J 2005 Phys. Rev. Lett. 95 060501
[69] Liao J Q and Kuang L M 2007 J. Phys. B: At. Mol. Opt. Phys. 40 1845
[70] Xue F, Zhong L, Li Y and Sun C P 2007 Phys. Rev. B 75 033407
[71] Chen G, Chen Z, Yu L and Liang J 2007 Phys. Rev. A 76 024301
[72] Liao J Q and Kuang L M 2008 Eur. Phys. J. B 63 79
[1] Effective dynamics and quantum state engineering by periodic kicks
Zhi-Cheng Shi(施志成), Zhen Chen(陈阵), Jian-Hui Wang(王建辉), Yan Xia(夏岩), and X X Yi(衣学喜). Chin. Phys. B, 2023, 32(4): 044210.
[2] Quantum properties of nonclassical states generated by an optomechanical system with catalytic quantum scissors
Heng-Mei Li(李恒梅), Bao-Hua Yang(杨保华), Hong-Chun Yuan(袁洪春), and Ye-Jun Xu(许业军). Chin. Phys. B, 2023, 32(1): 014202.
[3] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[4] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[5] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[6] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[7] Quantum simulation of lattice gauge theories on superconducting circuits: Quantum phase transition and quench dynamics
Zi-Yong Ge(葛自勇), Rui-Zhen Huang(黄瑞珍), Zi-Yang Meng(孟子杨), and Heng Fan(范桁). Chin. Phys. B, 2022, 31(2): 020304.
[8] Channel parameters-independent multi-hop nondestructive teleportation
Hua-Yang Li(李华阳), Yu-Zhen Wei(魏玉震), Yi Ding(丁祎), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(2): 020302.
[9] Analysis of atmospheric effects on the continuous variable quantum key distribution
Tao Liu(刘涛), Shuo Zhao(赵硕), Ivan B. Djordjevic, Shuyu Liu(刘舒宇), Sijia Wang(王思佳), Tong Wu(吴彤), Bin Li(李斌), Pingping Wang(王平平), and Rongxiang Zhang(张荣香). Chin. Phys. B, 2022, 31(11): 110303.
[10] Improving the purity of heralded single-photon sources through spontaneous parametric down-conversion process
Jing Wang(王静), Chun-Hui Zhang(张春辉), Jing-Yang Liu(刘靖阳), Xue-Rui Qian(钱雪瑞), Jian Li(李剑), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(7): 070304.
[11] Practical decoy-state BB84 quantum key distribution with quantum memory
Xian-Ke Li(李咸柯), Xiao-Qian Song(宋小谦), Qi-Wei Guo(郭其伟), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(6): 060305.
[12] Hierarchical simultaneous entanglement swapping for multi-hop quantum communication based on multi-particle entangled states
Guang Yang(杨光, Lei Xing(邢磊), Min Nie(聂敏), Yuan-Hua Liu(刘原华), and Mei-Ling Zhang(张美玲). Chin. Phys. B, 2021, 30(3): 030301.
[13] Deterministic nondestructive state analysis for polarization-spatial-time-bin hyperentanglement with cross-Kerr nonlinearity
Hui-Rong Zhang(张辉荣), Peng Wang(王鹏), Chang-Qi Yu(于长琦), and Bao-Cang Ren(任宝藏). Chin. Phys. B, 2021, 30(3): 030304.
[14] New semi-quantum key agreement protocol based on high-dimensional single-particle states
Huan-Huan Li(李欢欢), Li-Hua Gong(龚黎华), and Nan-Run Zhou(周南润). Chin. Phys. B, 2020, 29(11): 110304.
[15] Room temperature nonlinear mass sensing based on a hybrid spin-nanoresonator system
Jian-Yong Yang(杨建勇) and Hua-Jun Chen(陈华俊)†. Chin. Phys. B, 2020, 29(10): 107801.
No Suggested Reading articles found!