Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(11): 117802    DOI: 10.1088/1674-1056/21/11/117802

New assembly route for three-dimensional metamaterials obtained through effective medium theory

Zang Yuan-Zhang (臧元章), He Ming-Xia (何明霞), Gu Jian-Qiang (谷建强), Tian Zhen (田震), Han Jia-Guang (韩家广 )
Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin University, and Key Laboratory of Optoelectronics Information Technology, Tianjin 300072, China
Abstract  In this study, we illustrate the effective medium theories in the designs of three-dimensional composite metamaterials of both negative permittivity and negative permeability. The proposed metamaterial consists of random coated spheres with sizes smaller compared to the wavelength embedded in a dielectric host. Simple design rules and formulas following the effective medium models are numerically and analytically presented. We demonstrate that the revised Maxwell-Garnett effective medium theory enables us to design three-dimensional composite metamaterials through the assembly of the coated spheres which are random and much smaller than the wavelength of the light. The proposed approach allows for the precise control of the permittivity and the permeability and guides a facile, flexible, and versatile way for the fabrication of composite metamaterials.
Keywords:  metamaterials      effective medium theory  
Received:  25 April 2012      Revised:  24 May 2012      Accepted manuscript online: 
PACS:  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61107053, 61138001, and 61007034) and the Tianjin Natural Science Foundation, China (Grant No. 11JCYBJC25900).
Corresponding Authors:  Han Jia-Guang     E-mail:

Cite this article: 

Zang Yuan-Zhang (臧元章), He Ming-Xia (何明霞), Gu Jian-Qiang (谷建强), Tian Zhen (田震), Han Jia-Guang (韩家广 ) New assembly route for three-dimensional metamaterials obtained through effective medium theory 2012 Chin. Phys. B 21 117802

[1] Pendry J B 2000 Phys. Rev. Lett. 85 3966
[2] Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C and Schultz S 2000 Phys. Rev. Lett. 84 4184
[3] Veselago V G 1968 Sov. Phys. Usp. 10 509
[4] Yen T J, Padilla W J, Fang N, Vier D C, Smith D R, Pendry J B, Basov D N and Zhang X 2004 Science 303 1494
[5] Cummer S A 2003 Appl. Phys. Lett. 82 2008
[6] Padilla W J, Smith D R and Basov D N 2006 J. Opt. Soc. Am. B 23 404
[7] Pendry J B, Holden A J, Robbins D D and Stewart W J 1999 IEEE Trans. Micro-wave Theory Tech. 47 2075
[8] Linden S, Enkrich C, Wegener M, Zhou J, Koschny Th and Soukoulis C M 2004 Science 306 1351
[9] Han J G 2008 Opt. Express 16 1354
[10] Azad A K, Dai J and Zhang W 2006 Opt. Lett. 31 634
[11] Shelby R A, Smith D R and Schultz S 2001 Science 292 77
[12] Born M and Wolf E 1975 Principles of Optics (5th edn.) (Oxford: Pergamon Press)
[13] Bohren C F and Huffman D R 1983 Absorption and Scattering of Light by Small Particles (New York: Wiley)
[14] Kong J A 1990 Electromagnetic Wave Theory (New York: Wiley)
[15] Han J G, Zhang W, Chen W, Ray S, Zhang J, He M, Azad A K and Zhu Z Y 2007 J. Phys. Chem. C 111 13000
[16] Shalaev V M 2002 Optical Properties of Nanostructured Random Medium (Berlin: Springer)
[17] Weissker H C, Furthmüller J and Bechstedt F 2003 Phys. Rev. B 67 165322
[18] Mackay T G and Lakhtakia A 2006 J. Appl. Phys. 100 063533
[19] Granqvist C G and Hunderi O 1978 Phys. Rev. B 18 2897
[20] McLachlan D S, Blaszkiewicz M and Newnham R E 1990 J. Am. Ceram. Soc. 73 2187
[21] Choy T C 1999 Effective Medium Theory (Oxford: Clarendon)
[22] Pendry J B, Schurig D and Smith D R 2006 Science 312 1780
[23] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F and Smith D R 2006 Science 314 977
[24] Cummer S A, Popa B I, Schurig D, Smith D R and Pendry J B 2006 Phys. Rev. E 74 036621
[1] Generation of a blue-detuned optical storage ring by a metasurface and its application in optical trapping of cold molecules
Chen Ling(凌晨), Yaling Yin(尹亚玲), Yang Liu(刘泱), Lin Li(李林), and Yong Xia(夏勇). Chin. Phys. B, 2023, 32(2): 023301.
[2] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[3] Hydrodynamic metamaterials for flow manipulation: Functions and prospects
Bin Wang(王斌) and Jiping Huang (黄吉平). Chin. Phys. B, 2022, 31(9): 098101.
[4] Analytical formula describing the non-saturating linear magnetoresistance in inhomogeneous conductors
Shan-Shan Chen(陈珊珊), Yang Yang(杨阳), and Fan Yang(杨帆). Chin. Phys. B, 2022, 31(8): 087303.
[5] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[6] Simulated and experimental studies of a multi-band symmetric metamaterial absorber with polarization independence for radar applications
Hema O. Ali, Asaad M. Al-Hindawi, Yadgar I. Abdulkarim, Ekasit Nugoolcharoenlap, Tossapol Tippo,Fatih Özkan Alkurt, Olcay Altıntaş, and Muharrem Karaaslan. Chin. Phys. B, 2022, 31(5): 058401.
[7] A high-quality-factor ultra-narrowband perfect metamaterial absorber based on monolayer molybdenum disulfide
Liying Jiang(蒋黎英), Yingting Yi(易颖婷), Yijun Tang(唐轶峻), Zhiyou Li(李治友),Zao Yi(易早), Li Liu(刘莉), Xifang Chen(陈喜芳), Ronghua Jian(简荣华),Pinghui Wu(吴平辉), and Peiguang Yan(闫培光). Chin. Phys. B, 2022, 31(3): 038101.
[8] High-efficiency unidirectional wavefront manipulation for broadband airborne sound with a planar device
Yang Tan(谭杨), Bin Liang(梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(3): 034303.
[9] A multi-band and polarization-independent perfect absorber based on Dirac semimetals circles and semi-ellipses array
Zhiyou Li(李治友), Yingting Yi(易颖婷), Danyang Xu(徐丹阳), Hua Yang(杨华), Zao Yi(易早), Xifang Chen(陈喜芳), Yougen Yi(易有根), Jianguo Zhang(张建国), and Pinghui Wu(吴平辉). Chin. Phys. B, 2021, 30(9): 098102.
[10] Highly tunable plasmon-induced transparency with Dirac semimetal metamaterials
Chunzhen Fan(范春珍), Peiwen Ren(任佩雯), Yuanlin Jia(贾渊琳), Shuangmei Zhu(朱双美), and Junqiao Wang(王俊俏). Chin. Phys. B, 2021, 30(9): 096103.
[11] Efficient realization of daytime radiative cooling with hollow zigzag SiO2 metamaterials
Huawei Yao(姚华伟), Xiaoxia Wang(王晓霞), Huaiyuan Yin(殷怀远), Yuanlin Jia(贾渊琳), Yong Gao(高勇), Junqiao Wang(王俊俏), and Chunzhen Fan(范春珍). Chin. Phys. B, 2021, 30(6): 064214.
[12] Hyperbolic metamaterials for high-efficiency generation of circularly polarized Airy beams
Lin Chen(陈林), Huihui Li(李会会), Weiming Hao(郝玮鸣), Xiang Yin(殷祥), Jian Wang(王健). Chin. Phys. B, 2020, 29(8): 084210.
[13] Extraordinary propagation characteristics of electromagnetic waves in one-dimensional anti-PT-symmetric ring optical waveguide network
Jie-Feng Xu(许杰锋), Xiang-Bo Yang(杨湘波), Hao-Han Chen(陈浩瀚), Zhan-Hong Lin(林展鸿). Chin. Phys. B, 2020, 29(6): 064201.
[14] Efficient and multifunctional terahertz polarization control device based on metamaterials
Xiao-Fei Jiao(焦晓飞), Zi-Heng Zhang(张子恒), Yun Xu(徐云), and Guo-Feng Song(宋国峰). Chin. Phys. B, 2020, 29(11): 114209.
[15] Enhanced reflection chiroptical effect of planar anisotropic chiral metamaterials placed on the interface of two media
Xiu Yang(杨秀), Tao Wei(魏涛), Feiliang Chen(陈飞良), Fuhua Gao(高福华), Jinglei Du(杜惊雷)†, and Yidong Hou(侯宜栋)‡. Chin. Phys. B, 2020, 29(10): 107303.
No Suggested Reading articles found!