Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(11): 110304    DOI: 10.1088/1674-1056/21/11/110304
GENERAL Prev   Next  

Comparison and control of the robustness between quantum entanglement and quantum correlation in open quantum system

Ji Ying-Hua (嵇英华)a b, Hu Ju-Ju (胡菊菊)a c, Hu Yan (胡燕 )a
a Department of Physics, Jiangxi Normal University, Nanchang 330022, China;
b Key Laboratory of Photoelectronics and Telecommunication of Jiangxi Province, Nanchang 330022, China
Abstract  We investigate the influence of environmental decoherence on the dynamics of coupled qubit system and quantum correlation. We analyse the relationship between concurrence and the degree of initial entanglement or the purity of initial quantum state, and also their relationship with quantum discord. The results show that the decrease of the purity of initial quantum state can induce the attenuation of concurrence or quantum discord, but the attenuation of quantum discord is obviously slower than concurrence's, correspondingly the survival time of quantum discord is longer. Further investigation reveals that the robustness of quantum discord and concurrence relies on the entanglement degree of initial quantum state. The higher the degree of entanglement, the more robust the quantum discord is than concurrence. And the reverse is equally true. The birth and death happen to quantum discord periodically and a newborn quantum discord comes into being under a certain condition, so does the concurrence.
Keywords:  coupled qubits      non-Markovian process      entanglement      quantum discord  
Received:  29 March 2012      Revised:  30 April 2012      Accepted manuscript online: 
PACS:  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.-a (Quantum information)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11164009).
Corresponding Authors:  Ji Ying-Hua     E-mail:  ahmxhxtt@yahoo.cn

Cite this article: 

Ji Ying-Hua (嵇英华), Hu Ju-Ju (胡菊菊), Hu Yan (胡燕 ) Comparison and control of the robustness between quantum entanglement and quantum correlation in open quantum system 2012 Chin. Phys. B 21 110304

[1] Jones J A, Vedral V, Ekert A and Castagnoli G 2000 Nature 403 869
[2] Duan L M, Cirac J I and Zoller P 2001 Science 292 1695
[3] Ji Y H, Liu Y M and Wang Z S 2011 Chin. Phys. B 20 070304
[4] Guo Z, Yan L S, Pan W, Luo B and Xu M F 2011 Acta Phys. Sin. 60 060301 (in Chinese)
[5] Xia J P, Ren X Z, Cong H L, Wang X W and He S 2012 Acta Phys. Sin. 61 014208 (in Chinese)
[6] Almeida M P, de Melo F, Hor-Meyll M, Salles A, Walborn S P, Souto Ribeiro P H and Davidovich L 2007 Science 316 579
[7] Lopez C E, Romero G, Lastra F, Solano E and Retamal J C 2008 Phys. Rev. Lett. 101 080503
[8] Li P, Zhang Q and You J Q 2009 Phys. Rev. A 79 014303
[9] Yu T and Eberly J H 2009 Science 323 598
[10] Lu D M 2011 Acta Phys. Sin. 60 090302 (in Chinese)
[11] He J Z, He X and Zheng J 2012 Chin. Phys. B 21 050303
[12] Mintert F, Carvalho A R R, Kus M and Buchleitner A 2005 Phys. Rep. 415 207
[13] Datta A, Shaji A and Caves C M 2008 Phys. Rev. Lett. 100 050502
[14] Xu J S, Xu X Y, Li C F, Zhang C J, Zou X B and Guo G C 2010 Nature Commun. 1 1005
[15] Xu J W and Chen Q H 2012 Chin. Phys. B 21 040302
[16] Qian Y and Xu J B 2012 Chin. Phys. B 21 030405
[17] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
[18] Sinayskiy I, Ferraro E, Napoli A, Messina A and Petruccione F 2009 J. Phys. A: Math. Theor. 42 485301
[19] Ji Y H and Hu J J 2010 Chin. Phys. B 19 060304
[20] Mazzola L, Piilo J and Maniscalco S 2010 Phys. Rev. Lett. 104 200401
[21] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[22] Ali M, Rau A R P and Alber G 2010 Phys. Rev. A 81 042105
[23] Henderson L and Vedral V 2001 J. Phys. A 34 6899
[24] Jin J S, Yu C S, Pei P and Song H S 2010 J. Opt. Soc. Am. B 27 1799
[25] Yu T and Eberly J H 2006 Phys. Rev. Lett. 97 140403
[26] Peres A 1996 Phys. Rev. Lett. 77 1413
[1] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[2] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[3] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[4] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[5] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[6] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[7] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[8] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[9] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[10] Effects of colored noise on the dynamics of quantum entanglement of a one-parameter qubit—qutrit system
Odette Melachio Tiokang, Fridolin Nya Tchangnwa, Jaures Diffo Tchinda,Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2022, 31(5): 050306.
[11] Protecting geometric quantum discord via partially collapsing measurements of two qubits in multiple bosonic reservoirs
Xue-Yun Bai(白雪云) and Su-Ying Zhang(张素英). Chin. Phys. B, 2022, 31(4): 040308.
[12] Probabilistic resumable quantum teleportation in high dimensions
Xiang Chen(陈想), Jin-Hua Zhang(张晋华), and Fu-Lin Zhang(张福林). Chin. Phys. B, 2022, 31(3): 030302.
[13] Tetrapartite entanglement measures of generalized GHZ state in the noninertial frames
Qian Dong(董茜), R. Santana Carrillo, Guo-Hua Sun(孙国华), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(3): 030303.
[14] Entanglement spectrum of non-Abelian anyons
Ying-Hai Wu(吴英海). Chin. Phys. B, 2022, 31(3): 037302.
[15] Time evolution law of a two-mode squeezed light field passing through twin diffusion channels
Hai-Jun Yu(余海军) and Hong-Yi Fan(范洪义). Chin. Phys. B, 2022, 31(2): 020301.
No Suggested Reading articles found!