Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(11): 110305    DOI: 10.1088/1674-1056/21/11/110305
GENERAL Prev   Next  

Entanglement concentration for arbitrary hybrid less-entangled state and W state using quantum dots and microcavity coupled system

Cao Cong (曹聪), Wang Chuan (王川), Zhang Ru (张茹 )
School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract  We propose a practical entanglement concentration protocol (ECP) for a hybrid entangled state using quantum dots and microcavity coupled system. A hybrid less-entangled state can be concentrated to a most-entangled state with a certain probability using only one ancillary single photon. Moreover, using this protocol, we can also concentrate arbitrary three-particle less-entangled W state using two ancillary photons and classical communication. The proposed protocols provide us with a useful method to concentrate less-entangled states, which can be implemented with current technology.
Keywords:  entanglement concentration      quantum dot      microcavity      W state  
Received:  03 May 2012      Revised:  14 May 2012      Accepted manuscript online: 
PACS:  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  78.67.Hc (Quantum dots)  
  78.20.Ek (Optical activity)  
Fund: Project supported by the National Fundamental Research Program of China (Grant No. 2010CB923202), the Specialized Research Fund for the Doctoral Program of Education Ministry of China (Grant No. 20090005120008), the Fundamental Research Funds for the Central Universities of China, and the National Natural Science Foundation of China (Grant Nos. 60937003, 61178010, and 61205117).
Corresponding Authors:  Wang Chuan     E-mail:  wangchuan82@gmail.com

Cite this article: 

Cao Cong (曹聪), Wang Chuan (王川), Zhang Ru (张茹 ) Entanglement concentration for arbitrary hybrid less-entangled state and W state using quantum dots and microcavity coupled system 2012 Chin. Phys. B 21 110305

[1] Bennett C H, Brassard G and Mermin N D 1992 Phys. Rev. Lett. 68 557
[2] Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H and Zeilinger A 1997 Nature 390 575
[3] Hillery M, Buzek V and Berthiaume A 1999 Phys. Rev. A 59 1829
[4] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
[5] Long G L and Liu X S 2002 Phys. Rev. A 65 032302
[6] Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317
[7] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[8] Bennett C H, Brassard G, Popescu S, Schumacher B, Smolin J A and Wootters W K 1996 Phys. Rhys. Lett. 76 722
[9] Bennett C H, Bernstein H J, Popescu S and Schumacher B 1996 Phys. Rev. A 53 2046
[10] Shi B S, Jiang Y K and Guo G C 2000 Phys. Rev. A 62 054301
[11] Yamamoto T, Koashi M and Imoto N 2001 Phys. Rev. A 64 012304
[12] Zhao Z, Pan J W and Zhan M S 2001 Phys. Rev. A 64 014301
[13] Sheng Y B, Deng F G and Zhou H Y 2008 Phys. Rev. A 77 062325
[14] Sheng Y B, Deng F G and Zhou H Y 2010 Quantum Inf. Comput. 10 272
[15] Sheng Y B, Deng F G and Zhou H Y 2009 Phys. Lett. A 373 1823
[16] Wang C, Zhang Y and Jin G S 2011 Phys. Rev. A 84 032307
[17] Waks E and Vuckovic J 2006 Phys. Rev. Lett. 96 153601
[18] Hu C Y, Young A, O'Brien J L, Munro W J and Rarity J G 2008 Phys. Rev. B 78 085307
[19] Hu C Y, Munro W J and Rarity J G 2008 Phys. Rev. B 78 125318
[20] Hu C Y, Munro W J, O'Brien J L and Rarity J G 2009 Phys. Rev. B 80 205326
[21] Hu C Y and Rarity J G 2011 Phys. Rev. B 83 115303
[22] van Loock P, Ladd T D, Sanaka K, Yamaguchi F, Nemoto K, Munro W J and Yamamoto Y 2006 Phys. Rev. Lett. 96 240501
[23] Bonato C, Haupt F, Oemrawsingh S S R, Gudat J, Ding D, van Exter M P and Bouwmeester D 2010 Phys. Rev. Lett. 104 160503
[24] Azuma K, Sota N, Namiki R, Özdemir S K, Yamamoto T, Koashi M and Imoto N 2009 Phys. Rev. A 80 060303
[25] Waks E and Monroe C 2009 Phys. Rev. A 80 062330
[26] Brask J B, Rigas I, Polzik E S, Andersen U L and Sorensen A S 2010 Phys. Rev. Lett. 105 160501
[27] Walls D F and Milburn G J 1994 Quantum Optics (Berlin Heidelberg: Springer-Verlag)
[28] Cao Z L and Yang M 2003 J. Phys. B 36 4245
[29] Zhang L H, Yang M and Cao Z L 2007 Physica A 374 611
[30] Wang H F, Zhang S and Yeon K H 2010 Eur. Phys. J. D 56 271
[31] Sheng Y B, Zhou L and Zhao S M 2012 Phys. Rev. A 85 042302
[32] Reimaier J P, Sek G, Löffler A, Hofmann C, Kuhn S, Reitzenstein S, Keldysh L V, Kulakovskii V D, Reinecke T L and Forchel A 2004 Nature 432 197
[33] Atatüre M, Dreiser J, Badolato A, Hogele A, Karrai K and Imamoglu A 2006 Science 312 551
[34] Xu X, Wu Y W, Sun B, Huang Q, Cheng J, Steel D G, Bracker A S, Gammon D, Emary C and Sham L J 2007 Phys. Rev. Lett. 99 097401
[35] Liu R B, Yao W and Sham L J 2005 Phys. Rev. B 72 081306
[36] Misra B and Sudarshan E C G 1977 J. Math. Phys. 18 756
[37] Itano W M, Heinzen D J, Bollinger J J and Wineland D J 1990 Phys. Rev. A 41 2295
[38] Press D, De Greve K, McMahon P L, Ladd T D, Friess B, Schneider C, Kamp M, Höfling S, Forchel A and Yamamoto Y 2010 Nature Photonics 4 436
[39] Xu X, Yao W, Sun B, Steel D G, Bracker A S, Gammon D and Sham L J 2009 Nature 459 1105
[40] Borri P, Langbein W, Schneider S, Woggon U, Sellin R L, Ouyang D and Bimberg D 2001 Phys. Rev. Lett. 87 157401
[41] Berezovsky J, Mikkelsen M H, Stoltz N G, Coldren L A and Awschalom D D 2008 Science 320 349
[42] Press D, Ladd T D, Zhang B and Yamamoto Y 2008 Nature 456 218
[43] Greilich A, Economou S E, Spatzek S, Yakovlev D R, Reuter D, Wieck A D, Reinecke T L and Bayer M 2009 Nature Phys. 5 262
[1] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[2] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[3] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[4] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[5] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[6] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[7] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[8] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[9] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[10] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[11] Single-mode lasing in a coupled twin circular-side-octagon microcavity
Ke Yang(杨珂), Yue-De Yang(杨跃德), Jin-Long Xiao(肖金龙), and Yong-Zhen Huang(黄永箴). Chin. Phys. B, 2022, 31(9): 094205.
[12] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[13] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[14] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[15] Chiral splitting of Kondo peak in triangular triple quantum dot
Yi-Ming Liu(刘一铭), Yuan-Dong Wang(王援东), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(5): 057201.
No Suggested Reading articles found!