Abstract We study the dynamics of geometric quantum discord (GQD) between two qubits, each qubit interacting at the same time with K independent multiple bosonic reservoirs at zero temperature. In both weak and strong qubit-reservoirs coupling regimes, we find that the increase of the number K of reservoirs can induce the damped oscillation of GQD, and enhance the memory effects of the overall environment. And the Hilbert-Schmidt norm GQD (two-norm GQD) is always smaller than the trace norm geometric quantum discord (one-norm GQD). Therefore, the one-norm GQD is a better way to measure the quantum correlation. Finally, we propose an effective strategy to improve GQD by using partially collapsing measurements, and we find that the protection effect is better with the increase of the weak measurement strength.

Xue-Yun Bai(白雪云) and Su-Ying Zhang(张素英) Protecting geometric quantum discord via partially collapsing measurements of two qubits in multiple bosonic reservoirs 2022 Chin. Phys. B 31 040308

[1] Ekert A and Jozsa R 1996 Rev. Mod. Phys. 68 733 [2] Gottesman D and Chuang I L 1999 Nature402 390 [3] Bennett C H and DiVincenzo D P 2000 Nature404 247 [4] Takita M, Cross A W, Corcoles A D, Chow J M and Gambetta J M 2017 Phys. Rev. Lett. 119 180501 [5] Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895 [6] Ekert A K 1991 Phys. Rev. Lett. 67 661 [7] Dan K, Mor T and Ratsaby G 2012 Quantum Inf. Comput. 6 606 [8] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901 [9] Datta A 2009 Phys. Rev. A80 052304 [10] Li J Q and Liang J Q 2011 Phys. Lett. A375 1496 [11] Zeng S P, Shi H L, Zhou X, Wang X H, Liu S Y and Hu M L 2019 Sci. Rep. 9 1083 [12] Kon W Y, Krisnanda T, Sengupta P and Paterek T 2019 Phys. Rev. B100 235103 [13] Meher N, Patoary A S M, Kulkarni G and Jha A K 2020 J. Opt. Soc. Am B37 1224 [14] Virzí S, Rebufello E, Avella A, Piacentini F, Gramegna M, Berchera I R, Degiovanni I P and Genovese M 2019 Sci. Rep. 9 3030 [15] Chen M C, Zhong H S, Li Y, Wu D, Wang X L, Li L, Liu N L, Lu, C Y and Pan J W 2019 Sci. Bull. 64 580 [16] Cao W, Lu X, Meng X, Sun J, Shen H and Xiao Y 2020 Phys. Rev. Lett. 124 030401 [17] Datta A, Shaji A and Caves C M 2008 Phys. Rev. Lett. 100 050502 [18] Piani M, Horodecki P and Horodecki R 2008 Phys. Rev. Lett. 100 090502 [19] Dakić B, Lipp Y O, Ma X, Ringbauer M, Kropatschek S, Barz S, Paterek T, Vedral V, Zeilinger A, Brukner C and Walther P 2012 Nat. Phys. 8 666 [20] Brodutch A and Terno D R 2010 Phys. Rev. A81 062103 [21] De Chiara G and Sanpera A 2018 Rep. Prog. Phys. 81 074002 [22] Luo S 2008 Phys. Rev. A77 42303 [23] Ali M, Rau A R P and Alber G 2010 Phys. Rev. A81 82 [24] Knill E and Laflamme R 1998 Phys. Rev. Lett. 81 5672 [25] Horodecki M, Horodecki P and Horodecki R 2005 Phys. Rev. A71 062307 [26] Luo S and Fu S 2011 Phys. Rev. Lett. 106 120401 [27] Dakic B, Vedral V and Brukner C 2010 Phys. Rev. Lett. 105 190502 [28] Luo S 2008 Phys. Rev. A77 042303 [29] Rulli C C and Sarandy M S 2011 Phys. Rev. A84 042109 [30] Hu X, Fan H, Zhou D L and Liu W M 2013 Phys. Rev. A87 032340 [31] Tufarelli T, Girolami D, Vasile R, Bose S and Adesso G 2012 Phys. Rev. A86 052326 [32] Piani M 2012 Phys. Rev. A86 034101 [33] Paula F M, Oliveira T R D and Sarandy M S 2013 Phys. Rev. A87 064101 [34] Mohamed A B A 2012 Ann. Phys. 327 3130 [35] Zhang G F, Ji A L, Fan H and Liu W M 2012 Ann. Phys. 327 2074 [36] Zhang G F, Fan H, Ji A L and Liu W M 2012 Eur. Phys. J. D66 34 [37] Ramzan M 2013 Quantum Inf. Process. 12 2721 [38] Hu M L and Lian H L 2015 Ann. Phys. 362 795 [39] Bai X M, Wang N, Li J Q and Liang J Q 2016 Quantum Inf. Process. 15 2771 [40] Mohamed A B A and Metwally N 2019 Quantum Inf. Process. 18 79 [41] Orthey Jr A C and Angelo R M 2019 Phys. Rev. A100 042110 [42] Bemani F, Roknizadeh R, Motazedifard A, Naderi M H and Vitali D 2019 Phys. Rev. A99 063814 [43] Kenfack L T, Tchoffo M, Javed M and Fai L C 2020 Quantum Inf. Process. 19 107 [44] Mohamed A B A, Hessian H A and Eleuch H 2020 Chaos Soliton Fract. 135 109773 [45] Vimal V K and Subrahmanyam V 2020 Phys. Rev. A102 012406 [46] Ban M 2020 Quantum Inf. Process19 46 [47] Pourkarimi M R and Haddadi S 2020 Laser Phys. Lett. 17 025206 [48] Li X X, Yin H D, Li D X and Shao X Q 2020 Phys. Rev. A101 012329 [49] Apollaro T J G, Lorenzo S, DiFranco C, Plastina F and Paternostro M 2014 Phys. Rev. A90 012310 [50] Chan C K, Lin G D, Yelin S F and Lukin M D 2014 Phys. Rev. A89 042117 [51] Hanson R, Dobrovitski V V, Feiguin A E, Gywat O and Awschalom D D 2008 Science320 352 [52] Altintas F 2010 Opt. Commun283 5264 [53] Montealegre J D, Paula F M, Saguia A and Sarandy M S 2013 Phys. Rev. A87 042115 [54] Nakano T, Piani M and Adesso G 2013 Phys. Rev. A88 012117 [55] Ciccarello F, Tufarelli T and Giovannetti V 2014 New. J. Phys. 16 013038 [56] Man Z X, An N B and Xia Y J 2014 Phys. Rev. A90 062104 [57] Bellomo B, Franco R L and Compagno G 2007 Phys. Rev. Lett. 99 160502 [58] Facchi P, Lidar D A and Pascazio S 2004 Phys. Rev. A69 032314 [59] Lidar D A, Chuang I and Whaley K B 1998 Phys. Rev. Lett. 81 2594 [60] Knill E and Laflamme R 1997 Phys. Rev. A55 900 [61] Huang A J, Shi J D, Wang D and Ye L 2017 Quantum Inf. Process16 46 [62] Ding Z Y, He J and Ye L 2016 Ann. Phys. 377 96

Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.