Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(10): 106103    DOI: 10.1088/1674-1056/21/10/106103
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Structural analysis and crystal-field calculations of Nd3+ in GdxLu1-xTaO4 (x=0.85) polycrytalline

Gao Jin-Yun (高进云)a b, Zhang Qing-Li (张庆礼)a, Yang Hua-Jun (杨华军), Zhou Peng-Yu (周鹏宇)a b, Sun Dun-Lu (孙敦陆)a b, Yin Shao-Tang (殷绍唐)a, He Ye (何晔)a
a Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China;
b Graduate School of the Chinese Academy of Sciences, Beijing 100049, China;
c China Electronics Technology Group Corporation, No. 26 Research Institute, Chongqing 400060, China
Abstract  The crystal structural parameters of Nd3+-doped rare earth orthotantalate GdxLu1-xTaO4 (x=0.85) are determined by applying the Rietveld refinement to its X-ray diffraction, and its emission and excitation spectra at 77 K are analysed. The relativistic model of ab-initio self-consistent DV-Xα method, which is applied to the cluster NdO8 in GdxLu1-xTaO4, and the effective Hamiltonian model are used to investigate its spin-orbit and crystal-field parameters. The free-ions and crystal-field parameters are fitted to the experimental energy levels at 77 K with a root-mean-square deviation of 14.92 cm-1. According to the crystal-field calculations, 96 levels of Nd3+ are assigned. Finally, the fitting results of free-ions and crystal-field parameters are compared with those already reported for Nd3+:YAlO3. The results indicate that the free-ion parameters are similar to those of the Nd3+ in GdxLu1-xTaO4 and YAlO3 hosts, and the crystal-field interaction of Nd3+ in GdxLu1-xTaO4 is stronger than that in YAlO3.
Keywords:  rare earth orthotantalate      crystal structure      optical properties      DV-Xα method      crystal-field calculations  
Received:  17 February 2012      Revised:  04 May 2012      Accepted manuscript online: 
PACS:  61.66.-f (Structure of specific crystalline solids)  
  31.15.A- (Ab initio calculations)  
  71.70.Ch (Crystal and ligand fields)  
  75.10.Dg (Crystal-field theory and spin Hamiltonians)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 90922003, 51172236, and 50872135) and the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. YYYJ-1002).
Corresponding Authors:  Zhang Qing-Li     E-mail:  zql@aiofm.ac.cn

Cite this article: 

Gao Jin-Yun (高进云), Zhang Qing-Li (张庆礼), Yang Hua-Jun (杨华军), Zhou Peng-Yu (周鹏宇), Sun Dun-Lu (孙敦陆), Yin Shao-Tang (殷绍唐), He Ye (何晔) Structural analysis and crystal-field calculations of Nd3+ in GdxLu1-xTaO4 (x=0.85) polycrytalline 2012 Chin. Phys. B 21 106103

[1] Pontes F M, Maurera M A, Souza A G, Longo E, Leite E R, Magnani R, Machado M A C, Pizani P S and Varela J A 2003 J. Eur. Ceram. Soc. 23 3001
[2] Gironnet J, Mikhailik V B, Kraus H, de Marcillac P and Coron N 2008 Nucl. Instrum. Method A 594 358
[3] Lempicki A, Glodo J and Coron N 1998 Nucl. Instrum. Method A 416 333
[4] Forbes T Z, Nyman M, Rodriguez M A and Navrotsky A 2010 J. Solid State Chem. 183 2516
[5] Liu W P, Zhang Q L, Ding L H, Sun D L, Luo J Q and Yin S T 2009 J. Alloys Compd. 474 226
[6] Cava R J, Murphy D W and Zahurak S M 1983 J. Electrochem. Soc. 130 2345
[7] Silva R A, Tirao G, Cusatis C and Andreeta J P 2005 J. Cryst. Growth 274 512
[8] Blasse G and Brill A 1970 J. Lumin. 3 109
[9] Tsunekawa S, Yamauchi H, Sasaki K, Yamaguchi Y and Fukuda T 1996 J. Alloys Compd. 245 89
[10] Li B, Gu Z N, Lin J H and Su M Z 2000 J. Mater. Sci. 35 1139
[11] Rukmini E, Jayasankar C K and Reid M F 1994 J. Phys.: Condens. Matter 6 5919
[12] Burdick G W, Jayasankar C K, Richardson F S and Reid M F 1994 Phys. Rev. B 50 16309
[13] Rudowicz C, Chua M and Reid M F 2000 Physica B 291 327
[14] Zhang Q L, Ning K J, Xiao J, Ding L H, Zhou W L, Liu W P, Yin S T and Jiang H H 2010 Chin. Phys. B 19 087501
[15] Song T, Sun X W, Liu Z J, Li J F and Tian J H 2012 Chin. Phys. B 21 037103
[16] Slater J C 1951 Phys. Rev. 81 385
[17] Sun Y, Liu L, Dong J P, Zhang B and Huang X J 2011 Chin. Phys. B 20 126101
[18] Li T X, Wang L, Wang F, Chen J, Jiang Z Y and Li L S 2011 Chin. Phys. B 20 033101
[19] Li J, Liu X Y, Zhu Z H and Sheng Y 2012 Chin. Phys. B 21 033101
[20] Reid M F, Duan C K and Zhou H W 2009 J. Alloys Compd. 488 591
[21] Ellis D E and Painter G S 1970 Phys. Rev. B 2 2887
[22] Rosen A and Ellis D E 1975 J. Chem. Phys. 62 3039
[23] Pieterson L, Reid M F, Wegh R T, Soverna S and Meijerink A 2002 Phys. Rev. B 65 045113
[24] Ning L X, Zhang L Y, Hu L S, Yang F, Duan C K and Zhang Y F 2011 J. Phys.: Condens. Matter 23 205502
[25] Hu L S, Reid M F, Duan C K, Xia S D and Yin M 2011 J. Phys.: Condens. Matter 23 045501
[26] Christiane G W and Koen B, in: Gschneidner K A and Eyring L (edt.), 1996 Handbook on the Physics and Chemistry of Rare Earths (Amsterdam, New York, Oxford: North-Holland Publishing Company) 23 pp. 143-152
[27] Karbowiak M, Edelstein N M, Drozdzynski J and Kossowski K 2002 Chem. Phys. 277 362
[28] Xia S D 1994 Group Theory and Spectroscopy (Beijing: Science Press) pp. 262-283 (in Chinese)
[29] Loro H, Vasquez D, E Camarillo G, Castillo H Del, Munoz G, C Flores J, J Hernandez A and Murrieta S H 2007 Phys. Rev. B 75 125405-8
[30] Newman D J and Betty N 2000 Crystal Field Handbook (Cambridge: Cambridge University Press) pp. 43-46
[31] Christiane G W and Koen B, in: Gschneidner K A and Eyring L (edt.), 1996 Handbook on the Physics and Chemistry of Rare Earths (Amsterdam, New York, Oxford: North-Holland Publishing Company) 23 p. 164
[32] Auzel F and Malta O L 1983 J. Phys. 44 201
[33] Rietveld H M 1969 J. Appl. Crystallogr. 2 65
[34] Antic-Fidancev E, Holsa J and Lastusaari M 2003 J. Phys.: Condens. Matter 15 863
[35] Molina P, Loro H, Álvarez-García S, Bausá L E, Rodriguez E Martín, Guillot-Noël O, Goldner Ph, Bettinelli M, Ghigna P and Solé J García 2009 Phys. Rev. B 80 054111-8
[36] da Gama A A S and de Gilberto F Sa 1981 J. Chem. Phys. 75 2583
[37] Duan C K, Tanner P A, Makhov V N and Kirm M 2007 Phys. Rev. B 75 195130
[38] Newman D J and Betty N 2000 Crystal Field Handbook (Cambridge: Cambridge University Press) pp. 24-26
[1] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[2] A new transition metal diphosphide α-MoP2 synthesized by a high-temperature and high-pressure technique
Xiaolei Liu(刘晓磊), Zhenhai Yu(于振海), Jianfu Li(李建福), Zhenzhen Xu(徐真真), Chunyin Zhou(周春银), Zhaohui Dong(董朝辉), Lili Zhang(张丽丽), Xia Wang(王霞), Na Yu(余娜), Zhiqiang Zou(邹志强),Xiaoli Wang(王晓丽), and Yanfeng Guo(郭艳峰). Chin. Phys. B, 2023, 32(1): 018102.
[3] Site selective 5f electronic correlations in β-uranium
Ruizhi Qiu(邱睿智), Liuhua Xie(谢刘桦), and Li Huang(黄理). Chin. Phys. B, 2023, 32(1): 017101.
[4] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[5] Isotropic negative thermal expansion and its mechanism in tetracyanidoborate salt CuB(CN)4
Chunyan Wang(王春艳), Qilong Gao(高其龙), Andrea Sanson, and Yu Jia(贾瑜). Chin. Phys. B, 2022, 31(6): 066501.
[6] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[7] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[8] Temperature-dependent structure and magnetization of YCrO3 compound
Qian Zhao(赵前), Ying-Hao Zhu(朱英浩), Si Wu(吴思), Jun-Chao Xia(夏俊超), Peng-Fei Zhou(周鹏飞), Kai-Tong Sun(孙楷橦), and Hai-Feng Li(李海峰). Chin. Phys. B, 2022, 31(4): 046101.
[9] Tailoring the optical and magnetic properties of La-BaM hexaferrites by Ni substitution
Hafiz T. Ali, M. Ramzan, M Imran Arshad, Nicola A. Morley, M. Hassan Abbas, Mohammad Yusuf, Atta Ur Rehman, Khalid Mahmood, Adnan Ali, Nasir Amin, and M. Ajaz-un-Nabi. Chin. Phys. B, 2022, 31(2): 027502.
[10] Pressure-induced phase transition in transition metal trifluorides
Peng Liu(刘鹏), Meiling Xu(徐美玲), Jian Lv(吕健), Pengyue Gao(高朋越), Chengxi Huang(黄呈熙), Yinwei Li(李印威), Jianyun Wang(王建云), Yanchao Wang(王彦超), and Mi Zhou(周密). Chin. Phys. B, 2022, 31(10): 106104.
[11] First-principles study of structural and opto-electronic characteristics of ultra-thin amorphous carbon films
Xiao-Yan Liu(刘晓艳), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(1): 016102.
[12] Stability of liquid crystal systems doped with γ-Fe2O3 nanoparticles
Xu Zhang(张旭), Ningning Liu(刘宁宁), Zongyuan Tang(唐宗元), Yingning Miao(缪应宁), Xiangshen Meng(孟祥申), Zhenghong He(何正红), Jian Li(李建), Minglei Cai(蔡明雷), Tongzhou Zhao(赵桐州), Changyong Yang(杨长勇), Hongyu Xing(邢红玉), and Wenjiang Ye(叶文江). Chin. Phys. B, 2021, 30(9): 096101.
[13] Analysis of properties of krypton ion-implanted Zn-polar ZnO thin films
Qing-Fen Jiang(姜清芬), Jie Lian(连洁), Min-Ju Ying(英敏菊), Ming-Yang Wei(魏铭洋), Chen-Lin Wang(王宸琳), and Yu Zhang(张裕). Chin. Phys. B, 2021, 30(9): 097801.
[14] Structural modulation and physical properties of cobalt-doped layered La2M5As3O2 (M= Cu, Ni) compounds
Lei Yang(杨蕾), Yan-Peng Song(宋艳鹏), Jun-Jie Wang(王俊杰), Xu Chen(陈旭), Hui-Jing Du(杜会静), and Jian-Gang Guo(郭建刚). Chin. Phys. B, 2021, 30(7): 076106.
[15] Strain-tunable electronic and optical properties of h-BN/BC3 heterostructure with enhanced electron mobility
Zhao-Yong Jiao(焦照勇), Yi-Ran Wang(王怡然), Yong-Liang Guo(郭永亮), and Shu-Hong Ma(马淑红). Chin. Phys. B, 2021, 30(7): 076801.
No Suggested Reading articles found!