Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(10): 106102    DOI: 10.1088/1674-1056/21/10/106102
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Structure, stability, and motion of dislocations in double-wall carbon nanotubes

Zhang Kai-Wang (张凯旺), Li Zhong-Qiu (李中秋), Wu Jian (吴建), Peng Xiang-Yang (彭向阳), Tan Xin-Jun (谭新君), Sun Li-Zhong (孙立忠), Zhong Jian-Xin (钟建新)
Laboratory for Quantum Engineering and Micro-Nano Energy Technology and Department of Physics, Xiangtan University, Xiangtan 411105, China
Abstract  In this paper, a novel double-wall carbon nanotube (DWCNT) with both edge and screw dislocations is studied by using the molecular dynamics (MD) method. The differences between two adjacent tubule indexes of armchair and zigzag nanotubes are determined to be 5 and 9, respectively, by taking into account the symmetry, integrality, and thermal stability of the composite structures. It is found that melting first occurs near the dislocations, and the melting temperatures of the dislocated armchair and zigzag DWCNTs are around 2600 K-2700 K. At the pre-melting temperatures, the shrink of the dislocation loop, which is comprised of edge and screw dislocations, implies that the composite dislocation in DWCNTs has self-healing ability. The dislocated DWCNTs first fracture at the edge dislocations, which induces the entire break in axial tensile test. The dislocated DWCNTs have a smaller fracture strength compared to the perfect DWCNTs. Our results not only match with the dislocation glide of carbon nanotubes (CNTs) in experiments, but also can free from the electron beam radiation under experimental conditions observed by the high resolution transmission electron microscope (HRTEM), which is deemed to cause the motion of dislocation loop.
Keywords:  dislocation      carbon nanotube      molecular dynamics      thermal stability  
Received:  09 March 2012      Revised:  17 April 2012      Accepted manuscript online: 
PACS:  61.48.De (Structure of carbon nanotubes, boron nanotubes, and other related systems)  
  61.72.Cc (Kinetics of defect formation and annealing)  
  71.15.Pd (Molecular dynamics calculations (Car-Parrinello) and other numerical simulations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10974166 and 10774127), the Cultivation Fund of the Key Scientific and Technical Innovation Project of the Ministry of Education of China (Grant No. 708068), and the Research Foundation of Education Bureau of Hunan Province, China (Grant Nos. 09A094 and 10A118).
Corresponding Authors:  Zhang Kai-Wang     E-mail:  kwzhang@xtu.edu.cn

Cite this article: 

Zhang Kai-Wang (张凯旺), Li Zhong-Qiu (李中秋), Wu Jian (吴建), Peng Xiang-Yang (彭向阳), Tan Xin-Jun (谭新君), Sun Li-Zhong (孙立忠), Zhong Jian-Xin (钟建新) Structure, stability, and motion of dislocations in double-wall carbon nanotubes 2012 Chin. Phys. B 21 106102

[1] Lau K T 2003 Chem. Phys. Lett. 370 399
[2] Mayumi K, Thomas W E, Hidefunmi H and Katsumi T 1995 Chem. Phys. Lett. 233 47
[3] Ebbesen T W and Takada T 1995 Carbon 33 973
[4] Guo W L, Zhong W Y and Li S A 2005 Phys. Rev. B 72 075409
[5] Li W Z, Yan X, Kempa K, Ren Z F and Giersig M 2007 Carbon 45 2938
[6] Ru S, Lee Y H, Hwang J W, Hong S, Kim C, Park T G, Lee H and Hong S H 2011 Adv. Mater. 23 1915
[7] Chico L, Benedict L X, Louie S G and Cohen M L 1996 Phys. Rev. B 54 2600
[8] Huang J Y, Chen S, Wang Z Q, Kempa K, Wang Y M, Jo S H, Chen G, Dresselhaus M S and Ren Z F 2006 Nature 439 281
[9] Ding F, Jiao K, Lin Y and Yakobson B I 2007 Nano. Lett. 7 3681
[10] Ding F, Jiao K, Wu M Q and Yakobson B I 2007 Phys. Rev. Lett. 98 075503
[11] Li X Y, Zhang K W, Peng X Y, Li S M, Tan X J and Zhong J X 2012 Eur. Phys. J. B 85 64
[12] Han M X, Ji Z Y, Shang L W, Chen Y P, Wang H, Liu X, Li D M and Liu M 2011 Chin. Phys. B 20 086102
[13] Charliera A, McRae E, Heyd R, Charlier M F and Moretti D 1999 Carbon 37 1779
[14] Li X Y, Wei Y J, Lu L, Lu K and Gao H J 2010 Nature 464 877
[15] Yu T, Xie H X and Wang C Y 2012 Chin. Phys. B 21 026104
[16] Huang J Y, Chen S, Jo S H, Wang Z, Han D X, Chen G, Dresselhaus M S and Ren Z F 2005 Phys. Rev. Lett. 94 236802
[17] Huang J Y, Chen S, Ren Z F, Wang Z Q, Wang D Z, Vaziri M, Suo Z, Chen G and Dresselhaus M S 2006 Phys. Rev. Lett. 97 075501
[18] Huang J Y, Ding F and Yakobson B I 2008 Phys. Rev. Lett. 100 035503
[19] Huang J Y, Ding F and Yakobson B I 2008 Phys. Rev. B 78 155436
[20] Plimpton S 1995 J. Comp. Phys. 177 1
[21] Stuart S J, Tutein A B and Harrison J A 2000 J. Chem. Phys. 112 6472
[22] Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B and Sinnott S B 2002 J. Phys. C. M. 14 783
[23] Brenner D W 1992 Phys. Rev. B 46 1948
[24] Zhang K W, Stocks M and Zhong J X 2007 Nanotechnology 18 285703
[25] Wang W, Zhang K W, Meng L J, Li Z Q, Zuo X Y and Zhong J X 2009 Acta Phys. Sin. 59 2672 (in Chinese)
[26] Huang J Y, Qi L and Li J 2010 Nano. Res. 3 43
[1] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[2] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[3] Conductive path and local oxygen-vacancy dynamics: Case study of crosshatched oxides
Z W Liang(梁正伟), P Wu(吴平), L C Wang(王利晨), B G Shen(沈保根), and Zhi-Hong Wang(王志宏). Chin. Phys. B, 2023, 32(4): 047303.
[4] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[5] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[6] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[7] Evolution of microstructure, stress and dislocation of AlN thick film on nanopatterned sapphire substrates by hydride vapor phase epitaxy
Chuang Wang(王闯), Xiao-Dong Gao(高晓冬), Di-Di Li(李迪迪), Jing-Jing Chen(陈晶晶), Jia-Fan Chen(陈家凡), Xiao-Ming Dong(董晓鸣), Xiaodan Wang(王晓丹), Jun Huang(黄俊), Xiong-Hui Zeng(曾雄辉), and Ke Xu(徐科). Chin. Phys. B, 2023, 32(2): 026802.
[8] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[9] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[10] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[11] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[12] Core structure and Peierls stress of the 90° dislocation and the 60° dislocation in aluminum investigated by the fully discrete Peierls model
Hao Xiang(向浩), Rui Wang(王锐), Feng-Lin Deng(邓凤麟), and Shao-Feng Wang(王少峰). Chin. Phys. B, 2022, 31(8): 086104.
[13] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[14] Effect of void size and Mg contents on plastic deformation behaviors of Al-Mg alloy with pre-existing void: Molecular dynamics study
Ning Wei(魏宁), Ai-Qiang Shi(史爱强), Zhi-Hui Li(李志辉), Bing-Xian Ou(区炳显), Si-Han Zhao(赵思涵), and Jun-Hua Zhao(赵军华). Chin. Phys. B, 2022, 31(6): 066203.
[15] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
No Suggested Reading articles found!