CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Structural modulation and physical properties of cobalt-doped layered La2M5As3O2 (M= Cu, Ni) compounds |
Lei Yang(杨蕾)1,2, Yan-Peng Song(宋艳鹏)2,3, Jun-Jie Wang(王俊杰)2,3, Xu Chen(陈旭)2,3, Hui-Jing Du(杜会静)1,†, and Jian-Gang Guo(郭建刚)2,4,‡ |
1 Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China; 2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 3 University of Chinese Academy of Sciences, Beijing 100049, China; 4 Songshan Lake Materials Laboratory, Dongguan 523808, China |
|
|
Abstract We investigate the structural variation and physical properties of layered La2M5As3O2 (M=Cu, Ni) compound upon Co doping. It is found that the substitution of Co ion just induces the monotonous change of lattice constants without observing the anomalous kink in superconducting La2(Cu1-xNix)5As3O2 solid-solutions. Meanwhile, this doping barely changes As-As bond length in [M5As3]2- subunit (±2%), being significantly smaller than 7% shrinkage of that in La2(Cu1-xNix)5As3O2. Therefore, the doping dependence of crystal structure exhibits similar trend with Ba1-xKxFe2As2 without the interference of As1-As2 bonding, implying that the Co substitution for Cu/Ni is hole-doped. In terms of physical property, La2(Cu1-xCox)5As3O2 turns into itinerant ferromagnetic metal, while La2(Ni1-xCox)5As3O2 shows paramagnetism and suppressed structural phase transition upon Co-doping. The distinct structural variation and absence of superconductivity provide important clues to understand the effect of As-As bond in [M5As3]2- subunit.
|
Received: 26 February 2021
Revised: 27 March 2021
Accepted manuscript online: 30 March 2021
|
PACS:
|
61.50.-f
|
(Structure of bulk crystals)
|
|
72.15.-v
|
(Electronic conduction in metals and alloys)
|
|
75.20.En
|
(Metals and alloys)
|
|
74.70.Dd
|
(Ternary, quaternary, and multinary compounds)
|
|
Fund: Projected supported by the National Natural Science Foundation of China (Grant Nos. 51922105 and 51772322), the National Key Research and Development Program of China (Grant Nos. 2017YFA0304700 and 2016YFA0300600), and the Beijing Natural Science Foundation, China (Grant No. Z200005). |
Corresponding Authors:
Hui-Jing Du, Jian-Gang Guo
E-mail: hjdu@ysu.edu.cn;jgguo@iphy.ac.cn
|
Cite this article:
Lei Yang(杨蕾), Yan-Peng Song(宋艳鹏), Jun-Jie Wang(王俊杰), Xu Chen(陈旭), Hui-Jing Du(杜会静), and Jian-Gang Guo(郭建刚) Structural modulation and physical properties of cobalt-doped layered La2M5As3O2 (M= Cu, Ni) compounds 2021 Chin. Phys. B 30 076106
|
[1] Bednorz J G and Mueller K 1986 Z. Phys. B 64 189 [2] Yang C, Liu Y, Wang Y, Feng L, He Q, Sun J, Tang Y, Wu C C, Xiong J, Zhang W L, Lin X, Yao H, Liu H W, Fernandes G, Xu J, Valles J, Wang J and Li Y R 2019 Science 366 1505 [3] Ai P, Gao Q, Liu J, Zhang Y X, Li C, Huang J W, Song C Y, Yan H T, Zhao L, Liu G D, Gu G D, Zhang F F, Yang F, Peng Q J, Xu Z Y and Zhou X J 2019 Chin. Phys. Lett. 36 067402 [4] Kamihara Y, Watanabe T, Hirano M and Hosono H 2008 J. Am.Chem. Soc. 130 3296 [5] Rotter M, Tegel M and Johrend D 2008 Phys. Rev. Lett. 101 107006 [6] Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C and Wu M K 2008 Proc. Natl. Acad. Sci. USA 105 14262 [7] Guo J G, Jin S F, Wang G, Wang S C, Zhu K X, Zhou T T, He M and Chen X L 2010 Phys. Rev. B 82 180520 [8] Lai X F, Zhang H, Wang Y Q, Wang X, Zhang X, Lin J H and Huang F Q 2015 J. Am. Chem. Soc. 137 10148 [9] Wang C W, Wang M X, Jiang J, Yang H F, Yang L X, Shi W J, Lai X F, Mo S K, Barinov A, Yan B H, Liu Z, Huang F Q, Jia J F, Liu Z K and Chen Y L 2020 Chin. Phys. B 29 047401 [10] Zhang S Y, Miao G Y, Guan J Q, Xu X F, Liu B, Yang F, Wang W H, Zhu X T and Guo J D 2019 Chin. Phys. Lett. 36 107404 [11] Ren Z A, Lu W, Yang J, Yi W, X. Shen X L, Li Z C, Che G C, Dong X L, Sun L L, Zhou F and Zhao Z X 2008 Chin. Phys. Lett. 25 2215 [12] Kasahara S, Shibauchi T, Hashimoto K, Ikada K, Tonegawa S, Okazaki R, Shishido H, Ikeda H, Takeya H, Hirata K, Terashima T and Matsuda Y 2010 Phys. Rev. B 81 184519 [13] Dai P C, Hu J P and Dagotto E 2012 Nat. Phys. 8 709 [14] Chu J H, Analytis J G, Greve K D, McMahon P L, Islam Z, Yamamoto Y and Fisher I R 2010 Science 329 824 [15] Sun R J, Jin S F, Deng J, Hao M N, Zhao L L, Fan X, Sun X N, Guo J G and Gu L 2019 Chin. Phys. B 28 067401 [16] Ni S L, Hu W, Shen P P, Wei Z X, Liu S B, Li D, Yuan, J, Yu L, Jin K, Zhou F, Dong X L and Zhao Z X 2019 Chin. Phys. B 28 127401 [17] Ni N, Tillman M E, Yan J Q, Kracher A, Hannahs S T, Bud'ko S L and Canfield P C 2008 Phys. Rev. B 78 214515 [18] Canfield P C, Bud'ko S L, Ni Ni, Yan J Q and Kracher A 2009 Phys. Rev. B 80 060501 [19] Chen H, Ren Y, Qiu Y, Bao W, Liu R H, Wu G, Wu T, Xie Y L, Wang X F, Huang Q and Chen X H 2009 Euorphys. Lett. 85 17006 [20] Wang L, Hardy F, Böhmer A E, Wolf T, Schweiss P and Meingast C 2016 Phys. Rev. B 93 014514 [21] Ni N, Thaler A, Yan J Q, Kracher A, Colombier E, Bud'ko S L, Canfield P C and Hannahs S T 2010 Phys. Rev. B 82 024519 [22] Liu Y, Wang G, Ying T, Lai X, Jin S, Liu N, Hu J and Chen X 2016 Advanced Science 3 1600098 [23] Chen X, Guo J G, Gong C S, Cheng E J, Le C C, Liu N, Ying T P, Zhang Q H, Hu J P, Li S Y and Chen X L 2019 Science 14 171 [24] Yakita H, Ogino H, Okada T, Yamamoto A, Kishio K, Tohei T, Ikuhara Y, Gotoh Y, Fujihisa H, Kataoka K, Eisaki H and Shimoyama J I 2014 J. Am. Chem. Soc. 136 846 [25] Jia S, Jiramongkolchai P, Suchomel M R, Toby B H, Checkelsky J G, Ong N P and Cava R J 2011 Nat. Phys. 7 207 [26] Chen X, Guo J G, Gong C S, Cheng E J, Song Y P, Ying T P, Deng J, Li S Y and Chen X L 2019 Inorganic Chemistry 58 2770 [27] Rodríguez-Carvajal J 1993 Physica B 192 55 [28] Rotter M, Pangerl M, Tegel M and Johrendt D 2008 Cheminform 47 7949 [29] Sefat A S, Jin R, Mcguire M A, Sales B C, Singh D J and Mandrus D 2008 Phys. Rev. Lett. 101 117004 [30] Shen S J, Wang G, Jin S F, Huang Q Z, Ying T P, Li D D, Lai X F, Zhou T T, Zhang H, Lin Z P, Wu X Z and Cen X L 2014 Chem. Mater. 26 6221 [31] Ideta S, Yoshida T, Nishi I, Fujimori A, Kotani Y, Ono K, Nakashima Y, Yamaichi S, Sasagawa T, Nakajima M, Kihou K, Tomioka Y, Lee C H, Iyo A, Eisaki H, Ito T, Uchida S and Arita R 2013 Phys. Rev. Lett. 110 107007 [32] Kim M G, Lamsal J, Heitmann T W, Tucker G S, Pratt D K, Khan S N, Lee Y B, Alam A, Thaler A, Ni N, Ran S, Bud'ko S L, Marty K J, Lumsden M D, Canfield P C, Harmon B N, Johnson D D, Kreyssig A, McQueeney R J, and Goldmanet A I 2012 Phys. Rev. Lett. 109 167003 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|