Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(1): 016801    DOI: 10.1088/1674-1056/21/1/016801
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Dissociations of O2 molecules on ultrathin Pb(111) films: first-principles plane wave calculations

Hu Zi-Yu(胡自玉)a)b), Yang Yu(杨宇)b), Sun Bo(孙博)b), Zhang Ping(张平)b)†, Wang Wen-Chuan(汪文川)a), and Shao Xiao-Hong(邵晓红)a)‡
a Laboratory of Molecular and Materials Simulation, Key Laboratory for Nanomaterials of Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China; b Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
Abstract  Using first-principles calculations, we systematically study the dissociations of O2 molecules on different ultrathin Pb(111) films. According to our previous work revealing the molecular adsorption precursor states for O2, we further explore why there are two nearly degenerate adsorption states on Pb(111) ultrathin films, but no precursor adsorption states existing at all on Mg(0001) and Al(111) surfaces. The reason is concluded to be the different surface electronic structures. For the O2 dissociation, we consider both the reaction channels from gas-like and molecularly adsorbed O2 molecules. We find that the energy barrier for O2 dissociation from the molecular adsorption precursor states is always smaller than that from O2 gas. The most energetically favorable dissociation process is found to be the same on different Pb(111) films, and the energy barriers are found to be influenced by the quantum size effects of Pb(111) films.
Keywords:  first-principles calculation      dissociation      Pb(111)      quantum size effects  
Received:  02 June 2011      Revised:  11 August 2011      Accepted manuscript online: 
PACS:  68.43.Bc (Ab initio calculations of adsorbate structure and reactions)  
  68.43.Fg (Adsorbate structure (binding sites, geometry))  
  73.20.Hb (Impurity and defect levels; energy states of adsorbed species)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 90921003, 10904004 and 60776063) and the Fundamental Research Funds for the Central Universities, China (Grant No. JD1109).

Cite this article: 

Hu Zi-Yu(胡自玉), Yang Yu(杨宇), Sun Bo(孙博), Zhang Ping(张平), Wang Wen-Chuan(汪文川), and Shao Xiao-Hong(邵晓红) Dissociations of O2 molecules on ultrathin Pb(111) films: first-principles plane wave calculations 2012 Chin. Phys. B 21 016801

[1] Eichler A and Hafner J 1997 Phys. Rev. Lett. 79 4481
[2] Honkala K and Laasonen K 2000 Phys. Rev. Lett. 84 705
[3] Kung H H 1989 Transition Metal Oxides, Surface Chemistry and Catalysis (Amsterdam: Elsevier) pp. 259-273
[4] Henrich V E and Cox P A 1994 The Surface Science of Metal Oxides (Cambridge: Cambridge University Press) p. 247
[5] Blo'nski P, Kiejna A and Hafner J 2008 Phys. Rev. B 77 155424
[6] Yotsuhashi S, Yamada Y, Kishi T, Divno W A, Nakanishi H and Kasai H 2008 Phys. Rev. B 77 115413
[7] Nakatsuji H and Nakai H 1993 J. Chem. Phys. 98 2423
[8] Alatalo M, Jaatinen S, Salo P and Laasonen K 2004 Phys. Rev. B 70 245417
[9] Eichler A, Mittendorfer F and Hafner J 2000 Phys. Rev. B 62 4744
[10] Brune H, Wintterlin J, Trost J, Ertl G, Wiechers J and Behm R J 1993 J. Chem. Phys. 99 2128
[11] Osterlund L, Zorić I and Kasemo B 1997 Phys. Rev. B 55 15452
[12] Sasaki T and Ohno T 1999 Phys. Rev. B 60 7824
[13] Yourdshahyan Y, Razaznejad B and Lundqvist B I 2001 Solid State Commun. 117 531
[14] Yourdshahyan Y, Razaznejad B and Lundqvist B I 2002 Phys. Rev. B 65 075416
[15] Kasemo B 1974 Phys. Rev. Lett 65 1114
[16] Kasemo B, Toernqvist R, Norskov J K and Lundqvist B I 1979 Surf. Sci. 89 554
[17] Katz G, Zeiri Y and Kosloff R 2004 J. Chem. Phys. 120 3931
[18] Wodtke A M, Tully J C and Auerbach D J 2004 Int. Rev. Phys. Chem. 23 513
[19] Hellman A, Razaznejad B, Yourdshahyan Y, Ternow H, Zorić I and Lundqvist B I 2003 Surf. Sci. 126 532
[20] Hellman A, Razaznejad B and Lundqvist B I 2005 Phys. Rev. B 71 205424
[21] Behler J, Delley B, Lorenz S, Reuter K and Scheffler M 2005 Phys. Rev. Lett. 94 036104
[22] Behler J, Delley B, Reuter K and Scheffler M 2007 Phys. Rev. B 75 115409
[23] Zhang P, Sun B and Yang Y 2009 Phys. Rev. B 79 165416
[24] Lindgren S A and Wallden L 2000 Handbook of Surface Science (Vol. 2) Electronic Structure (New York: Elsevier) p. 899
[25] Milun M, Pervan P and Woodruff D P 2002 Rep. Prog. Phys. 65 99
[26] Thürmer K, Reutt-Robey J E, Williams E D, Uwaha M, Emundts A and Bonzel H P 2001 Phys. Rev. Lett. 87 186102
[27] Thürmer K, Williams E and Reutt-Robey J 2002 Science 297 2033
[28] Zhang Y F, Jia J F, Han T Z, Tang Z, Shen Q T, Guo Y, Qiu Z Q and Xue Q K 2005 Phys. Rev. Lett. 95 096802
[29] Upton M H, Wei C M, Chou M Y, Miller T and Chiang T C 2004 Phys. Rev. Lett. 93 026802
[30] Czoschke P, Hong H, Basile L and Chiang T C 2005 Phys. Rev. B 72 075402
[31] Wei C M and Chou M Y 2002 Phys. Rev. B 66 233408
[32] Ma X C, Jiang P, Qi Y, Jia J F, Yang Y, Duan W H, Li W X, Bao X H, Zhang S B and Xue Q K 2007 Proc. Natl. Acad. Sci. USA 104 9204
[33] Jiang P, Wang L L, Ning Y X, Qi Y, Ma X C, Jia J F and Xue Q K 2009 Chin. Phys. Lett. 26 016803
[34] Aballe L, Barinov A, Locatelli A, Heun S and Kiskinova M 2004 Phys. Rev. Lett. 93 196103
[35] Yang Y, Zhou G, Wu J, Duan W H, Xue Q K, Gu B L, Jiang P, Ma X C and Zhang S B 2008 J. Chem. Phys. 128 164705
[36] Sun B, Zhang P, Wang Z G, Duan S Q, Zhao X G and Xue Q K 2008 Phys. Rev. B 78 035421
[37] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[38] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
[39] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[40] Weinert M and Davenport J W 1992 Phys. Rev. B 45 13709
[41] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[42] Wyckoff R W G 1965 Crystal Structures (New York: Wiley-Interscience) p. 86
[43] Huber K P and Herzberg G 1979 Constants of Diatomic Molecules (New York: Van Nostrand) p. 494
[44] Perdew J P, Burke K and Ernhzerhof M 1996 Phys. Rev. Lett. 77 3865
[45] Ganduglia-Pirovano M V, Reuter K and Scheffler M 2002 Phys. Rev. B 65 245426
[46] Ciacchi L C and Payne M C 2004 Phys. Rev. Lett. 92 176104
[47] Yang Y, Li J, Liu Z R, Zhou G, Wu J, Duan W H, Jiang P, Jia J F, Xue Q K, Gu B L, Gu B L and Zhang S B 2009 Phys. Rev. B 80 073406
[48] Yang Y 2010 Chin. Phys. B 19 108201
[49] Hu F, Ming X, Fan H G, Chen G, Wang C Z, Wei Y J and Huang Z F 2009 Acta Phys. Sin. 58 1173 (in Chinese)
[50] Song C L, Wang Y L, Ning Y X, Jia J F, Chen X, Sun B, Zhang P, Xue Q K and Ma X C 2010 J. Am. Chem. Soc. 132 5
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[3] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[4] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[5] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[6] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[7] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[8] Nuclear dissociation after the O 1s $\rightarrow (^4\Sigma_\text{u}^-)$3sσ excitation in O$_2$ molecules
Bocheng Ding(丁伯承), Ruichang Wu(吴睿昌), Yunfei Feng(封云飞), and Xiaojing Liu(刘小井). Chin. Phys. B, 2022, 31(8): 083301.
[9] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[10] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[11] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[12] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[13] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[14] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[15] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
No Suggested Reading articles found!