|
|
Nuclear dissociation after the O 1s $\rightarrow (^4\Sigma_\text{u}^-)$3sσ excitation in O$_2$ molecules |
Bocheng Ding(丁伯承)1,2,3, Ruichang Wu(吴睿昌)1,2, Yunfei Feng(封云飞)1,2, and Xiaojing Liu(刘小井)1,2,† |
1 School Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China; 2 Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China; 3 University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract We investigate the dissociation dynamics of core-excited $\mathrm{O}_2$ molecules using a high-resolution energy-resolved electron-ion coincidence experimental setup. The excited cationic states with two valence holes and one Rydberg electron are created after spectator Auger decay induced by $\mathrm{O}$ 1s $\rightarrow (^4\Sigma_{\rm u}^-)3{\rm s}\sigma$ core excitation in $\mathrm{O}_2$. From the energy correlation between the kinetic energy of the Auger electron and the ion kinetic energy release, we distinguish several dissociation channels. Rather complex dissociation channels of the spectator Auger final states are disclosed, which can be explained by the increased number of the crossing point due to the existence of Rydberg electron. The quantum system will evolve into different dissociation limits at each crossing point between the potential energy curves.
|
Received: 26 December 2021
Revised: 14 February 2022
Accepted manuscript online: 17 February 2022
|
PACS:
|
33.80.Gj
|
(Diffuse spectra; predissociation, photodissociation)
|
|
31.70.Hq
|
(Time-dependent phenomena: excitation and relaxation processes, and reaction rates)
|
|
32.80.Hd
|
(Auger effect)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11574020), the Project of Thousand Youth Talents in China, and the Starting Grant of ShanghaiTech University. |
Corresponding Authors:
Xiaojing Liu
E-mail: liuxj@shanghaitech.edu.cn
|
Cite this article:
Bocheng Ding(丁伯承), Ruichang Wu(吴睿昌), Yunfei Feng(封云飞), and Xiaojing Liu(刘小井) Nuclear dissociation after the O 1s $\rightarrow (^4\Sigma_\text{u}^-)$3sσ excitation in O$_2$ molecules 2022 Chin. Phys. B 31 083301
|
[1] Gel'mukhanov F and Ågren H 1999 Phys. Rep. 312 87 [2] Piancastelli M N 2000 J. Electron Spectrosc. Relat. Phenom. 107 1 [3] Morin P and Nenner I 1986 Phys. Rev. Lett. 56 1913 [4] Björneholm O, Sundin S, Svensson S, Marinho R R T, Naves de Brito A, Gel'mukhanov F and Ågren H 1997 Phys. Rev. Lett. 79 3150 [5] Pahl E, Cederbaum L S, Meyer H D and Tarantelli F 1998 Phys. Rev. Lett. 80 1865 [6] Björneholm O, Bässler M, Ausmees A, Hjelte I, Feifel R, Wang H, Miron C, Piancastelli M N, Svensson S, Sorensen S L, Gel'mukhanov F and Ågren H 2000 Phys. Rev. Lett. 84 2826 [7] Liu X J, Miao Q, Gel'mukhanov F, Patanen M, Travnikova O, Nicolas C, Ågren H, Ueda K and Miron C 2015 Nat. Photon. 9 120 [8] Feifel R, Tanaka T, Kitajima M, Tanaka H, De Fanis A, Sankari R, Karlsson L, Sorensen S, Piancastelli M N, Prümper G, Hergenhahn U and Ueda K 2007 J. Chem. Phys. 126 174304 [9] Tanaka T, Feifel R, Kitajima M, Tanaka H, Sorensen S L, Sankari R, De Fanis A, Piancastelli M N, Karlsson L and Ueda K 2008 Phys. Rev. A 78 022516 [10] Gejo T, Oura M, Tokushima T, Horikawa Y, Arai H, Shin S, Kimberg V and Kosugi N 2017 J. Chem. Phys. 147 044310 [11] Tian L, Ding B, Nicolas C, Wu R, Feng Y, Patanen M, Nandi S, Bozek J, Miron C and Liu X J 2021 Phys. Rev. A 103 043103 [12] Hikosaka Y, Aoto T, Hall R I, Ito K, Hirayama R, Yamamoto N and Miyoshi E 2003 J. Chem. Phys. 119 7693 [13] Beebe N H F, Thulstrup E W and Andersen A 1976 J. Chem. Phys. 64 2080 [14] Lundqvist M, Edvardsson D, Baltzer P, Larsson M and Wannberg B 1996 J. Phys. B:At. Mol. Opt. Phys. 29 499 [15] Song S, Ding B, Xu W, Nicolas C, Patanen M, Nandi S, Bozek J, Miron C, Xiao Z and Liu X J 2019 Phys. Rev. A 99 022511 [16] Miron C and Morin P 2009 Nucl. Instrum. Methods Phys. Res. Sect. A 601 66 [17] Miron C, Simon M, Leclercq N and Morin P 1997 Rev. Sci. Instrum. 68 3728 [18] Le Guen K, Céolin D, Guillemin R, Miron C, Leclercq N, Bougeard M, Simon M, Morin P, Mocellin A, Burmeister F, Naves de Brito A and Sorensen S L 2002 Rev. Sci. Instrum. 73 3885 [19] Prümper G and Ueda K 2007 Nucl. Instrum. Methods Phys. Res. Sect. A 574 350 [20] Atomic Spectra Database 2016 physics.nist.gov/asd/ [21] Zhang W H, He C L, Hao Y S, MO Y X and Li J M 2007 Chin. Phys. Lett. 24 1220 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|