Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(1): 014205    DOI: 10.1088/1674-1056/21/1/014205
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

The population and decay evolution of a qubit under the time-convolutionless master equation

Huang Jiang(黄江), Fang Mao-Fa(方卯发), and Liu Xiang(刘翔)
Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, and Department of Physics, Hunan Normal University, Changsha 410081, China
Abstract  We consider the population and decay of a qubit under the electromagnetic environment. Employing the time-convolutionless master equation, we investigate the Markovian and non-Markovian behaviour of the corresponding perturbation expansion. The Jaynes-Cummings model on resonance is investigated. Some figures clearly show the different evolution behaviours. The reasons are interpreted in the paper.
Keywords:  Markovian      non-Markovian      time-convolutionless master equation  
Received:  21 March 2011      Revised:  24 July 2011      Accepted manuscript online: 
PACS:  42.50.Dv (Quantum state engineering and measurements)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11074072).

Cite this article: 

Huang Jiang(黄江), Fang Mao-Fa(方卯发), and Liu Xiang(刘翔) The population and decay evolution of a qubit under the time-convolutionless master equation 2012 Chin. Phys. B 21 014205

[1] Weiss U 2008 Quantum Dissipative Systems (3rd edn.) (Singapore: World Scientific press) pp. 99-108
[2] Breuer H P and Petruccione F 2007 The Theory of Open Quantum Systems (Oxford: Oxford University Press) pp. 460-471
[3] Wang D S and Zheng Y J 2010 Chin. Phys. B 19 083202
[4] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) pp. 100-112
[5] Liao X P, Fang M F, Zheng X J and Cai J W 2007 Chin. Phys. 16 1357
[6] Matsukevich D N, Chaneliere T, Jenkins S D, Lan S Y, Kennedy T A B and Kuzmich A 2006 Phys. Rev. Lett. 96 030405
[7] Schlosshauer M 2005 Rev. Mod. Phys. 76 1267
[8] Prevedal R Y, Lu W, Matthews R, Kattenback and Resch K J 2011 Phys. Rev. Lett. 106 110505
[9] Liu J M, Li J and Guo G C 2002 Chin. Phys. 11 876
[10] Ficek Z and Tanas R 2006 Phys. Rev. A 74 024304
[11] Yu T and Eberly J H 2004 Phys. Rev. Lett. 93 140404
[12] Ekert A K 1991 Phys. Rev. Lett. 67 661
[13] Ekert A K J, Tapster R and Massimo Palma G 1992 Phys. Rev. Lett. 69 1293
[14] Tae G N 2008 Phys. Rev. Lett. 103 230501
[15] Li H J and Zhang J S 2010 Chin. Phys. B 19 050508
[16] Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wooters W K 1993 Phys. Rev. Lett. 70 1895
[17] Chen J J, An J H, Tong Q J, Luo H G and Oh C H 2010 Phys. Rev. A 81 022120
[18] He Z, Zou J, Shao B and Kong S Y 2010 J. Phys. B 43 115503
[19] Xiao X, Fang M F, Li Y L, Zeng K and Wu C 2009 J. Phys. B 42 235502
[1] Non-Markovianity of an atom in a semi-infinite rectangular waveguide
Jing Zeng(曾静), Yaju Song(宋亚菊), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(3): 030305.
[2] Dissipative dynamics of an entangled three-qubit system via non-Hermitian Hamiltonian: Its correspondence with Markovian and non-Markovian regimes
M Rastegarzadeh and M K Tavassoly. Chin. Phys. B, 2021, 30(3): 034205.
[3] Coherent-driving-assisted quantum speedup in Markovian channels
Xiang Lu(鹿翔), Ying-Jie Zhang(张英杰), and Yun-Jie Xia(夏云杰). Chin. Phys. B, 2021, 30(2): 020301.
[4] Non-Markovian entanglement transfer to distant atoms in a coupled superconducting resonator
Qingxia Mu(穆青霞), Peiying Lin(林佩英). Chin. Phys. B, 2020, 29(6): 060304.
[5] Generating Kerr nonlinearity with an engineered non-Markovian environment
Fei-Lei Xiong(熊飞雷), Wan-Li Yang(杨万里), Mang Feng(冯芒). Chin. Phys. B, 2020, 29(4): 040302.
[6] Dipole-dipole interactions enhance non-Markovianity and protect information against dissipation
Munsif Jan, Xiao-Ye Xu(许小冶), Qin-Qin Wang(王琴琴), Zhe Chen(陈哲), Yong-Jian Han(韩永建), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿). Chin. Phys. B, 2019, 28(9): 090303.
[7] Dynamics of two levitated nanospheres nonlinearly coupling with non-Markovian environment
Xun Li(李逊), Biao Xiong(熊标), Shilei Chao(晁石磊), Jiasen Jin(金家森), Ling Zhou(周玲). Chin. Phys. B, 2019, 28(5): 050302.
[8] Quantifying quantum non-Markovianity via max-relative entropy
Yu Luo(罗宇), Yongming Li(李永明). Chin. Phys. B, 2019, 28(4): 040301.
[9] Dynamics of entanglement protection of two qubits using a driven laser field and detunings: Independent and common, Markovian and/or non-Markovian regimes
S Golkar, M K Tavassoly. Chin. Phys. B, 2018, 27(4): 040303.
[10] Optomechanical state transfer between two distant membranes in the presence of non-Markovian environments
Jiong Cheng(程泂), Xian-Ting Liang(梁先庭), Wen-Zhao Zhang(张闻钊), Xiangmei Duan(段香梅). Chin. Phys. B, 2018, 27(12): 120302.
[11] Non-Markovian speedup dynamics control of the damped Jaynes-Cummings model with detuning
Kai Xu(徐凯), Wei Han(韩伟), Ying-Jie Zhang(张英杰), Heng Fan(范桁). Chin. Phys. B, 2018, 27(1): 010302.
[12] Quantum coherence and non-Markovianity of an atom in a dissipative cavity under weak measurement
Yu Liu(刘禹), Hong-Mei Zou(邹红梅), Mao-Fa Fang(方卯发). Chin. Phys. B, 2018, 27(1): 010304.
[13] Consensus of multiple autonomous underwater vehicles with double independent Markovian switching topologies and timevarying delays
Zhe-Ping Yan(严浙平), Yi-Bo Liu(刘一博), Jia-Jia Zhou(周佳加), Wei Zhang(张伟), Lu Wang(王璐). Chin. Phys. B, 2017, 26(4): 040203.
[14] Biexponential distribution of open times of a toy channel model
Xiang Li(李翔), Jing-Jing Zhong(钟金金), Xue-Juan Gao(高学娟), Yu-Ning Wu(吴宇宁), Jian-Wei Shuai(帅建伟), Hong Qi(祁宏). Chin. Phys. B, 2017, 26(12): 128703.
[15] Quantum coherence preservation of atom with a classical driving field under non-Markovian environment
De-Ying Gao(高德营), Qiang Gao(高强), Yun-Jie Xia(夏云杰). Chin. Phys. B, 2017, 26(11): 110303.
No Suggested Reading articles found!