Abstract We investigate the non-Markovian effects on the entanglement transfer to the distant non-interacting atom qubits, which are embedded in a coupled superconducting resonator. The master equation governing the dynamics of the system is derived by the non-Markovian quantum state diffusion (NMQSD) method. Based on the solution, we show that the memory effect of the environment can lead to higher entanglement revival and make the entanglement last for a longer time. That is to say, the non-Markovian environment can enhance the entanglement transfer. It is also found that the maximum entanglement transferred to distant atoms can be modified by appropriately selecting the frequency of the modulated inter-cavity coupling. Moreover, with the initial anti-correlated state, the entanglement between the cavity fields can be almost completely transferred to the separated atoms. Lastly, we show that the memory effect has a significant impact on the generation of entanglement from the initial non-entangled states.

(Decoherence; open systems; quantum statistical methods)

Fund: Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. 2018MS056) and the National Natural Science Foundation of China (Grant Nos. 11605055 and 11974108).

Corresponding Authors:
Qingxia Mu
E-mail: qingxiamu@ncepu.edu.cn

Cite this article:

Qingxia Mu(穆青霞), Peiying Lin(林佩英) Non-Markovian entanglement transfer to distant atoms in a coupled superconducting resonator 2020 Chin. Phys. B 29 060304

[1]

Jones J A and Jaksch D 2012 Quantum Information, Computation and Communication (Cambridge: Cambridge University Press)

[2]

Pirandola S, Eisert J, Weedbrook C, Furusawa A and Braunstein S L 2015 Nat. Photon. 9 641

[3]

Cleve R and Buhrman H 1997 Phys. Rev. A 56 1201

[4]

Chen Z H, Zhang F Y, Shi Ying and Song H S 2012 Chin. Phys. Lett. 29 090304

[5]

Yang G, Lian B W, Nie M and Jin J 2017 Chin. Phys. B 26 040305

[6]

Kim M S and Agarwal G S 1999 Phys. Rev. A 59 3044

[7]

Solano E, Agarwal G S and Walther H 2003 Phys. Rev. Lett. 90 027903

[8]

Mu Q X, Ma Y H and Zhou L 2010 Phys. Rev. A 81 024301

[9]

Akram U, Bowen W P and Milburn G J 2013 New J. Phys. 15 093007

[10]

Dehghani A, Mojaveri B, Bahrbeig R J, Nosrati F and Franco R L 2019 J. Opt. Soc. Am. B 36 1858

[11]

Chen Y H, Xia Y, Chen Q Q and Song J 2015 Phys. Rev. A 91 012325

[12]

Gu X, Kockum A F, Miranowicz A, Liu Y X and Nori F 2017 Phys. Rep. 718-719 1

[13]

Wang C, Gao Y Y, Reinhold P, Heeres R W, Ofek N, Chou K, Axline C, REagor M, Blumoff J, Sliwa K M, Frunzio L, Girvin S M, Jiang L, Mirrahimi M, Devoret M H and Schoelkopf R J 2016 Science 352 1087

[14]

Ma S L, Xie J K, Li X K and Li F L 2019 Phys. Rev. A 99 042317

[15]

Srinivasan S J, Sundaresan N M, Sadri D, Liu Y, Gambetta J M, Yu T, Girvin S M and Houck A A 2014 Phys. Rev. A 89 033857

[16]

Axline C J, Burkhart L D, Pfaff W, Zhang M Z, Chou K, Campagne-lbarcq P, Reinhold P, Frunzio L, Girvin S M, Jiang L, Devoret M H and Schoelkopf 2018 Nat. Phys. 14 705

[17]

Rosenblum S, Gao Y Y, Reinhold P, Wang C, Axline C J, Frunzio L, Girvin S M, Jiang L, Mirrahimi M, Devoret M H and Schoelkopf R J 2018 Nat. Commun. 9 652

[18]

Caruso F, Giovannetti V, Lupo C and Mancini S 2014 Rev. Mod. Phys. 86 1203

[19]

Shor P W 1995 Phys. Rev. A 52 R2493

[20]

Steane A M 1996 Phys. Rev. Lett. 77 793

[21]

Zhao X Y, Hedemann S R and Yu T 2013 Phys. Rev. A 88 022321

[22]

Maniscalco S, Francica F, Zaffino R L, Lo Gullo N and Plastina F 2008 Phys. Rev. Lett. 100 090503

[23]

De Lange G, Wang Z H, Risté D, Dobrovitski V V and Hanson R 2010 Science 330 60

[24]

Breuer H P, Laine E M, Piilo J and Vacchini B 2016 Rev. Mod. Phys. 88 021002

[25]

Laine E M, Piilo J and Breuer H P 2010 Phys. Rev. A 81 062115

[26]

Wißmann S, Breuer H P and Vacchini B 2015 Phys. Rev. A 92 042108

[27]

Shen H Z, Li D X, Su S L, Zhou Y H and Yi X X 2017 Phys. Rev. A 96 033805

[28]

Mu Q X, Zhao X Y and Yu T 2016 Phys. Rev. A 94 012334

[29]

Cheng J, Zhang W Z, Zhou L and Zhang W 2016 Sci. Rep. 6 23678

[30]

Leggio B, Lo Franco R, Soares-Pinto D O, Horodecki P and Compagno G 2015 Phys. Rev. A 92 032311

[31]

Costa-Filho J I, Lima R B B, Paiva R R, M P, Morgado W A M, Lo Franco R and Soares-Pinto D O 2017 Phys. Rev. A 95 052126

[32]

De Vega I and Alonso D 2017 Rev. Mod. Phys. 89 015001

[33]

Mu Q X, Li H, Huang X and Zhao X Y 2018 Opt. Commun. 426 70

[34]

Diósi L, Gisin N and Strunz W T 1998 Phys. Rev. A 58 1699

[35]

Strunz W T, Diósi L and Gisin N 1999 Phys. Rev. Lett. 82 1801

[36]

Yu T, Diósi L, Gisin N and Strunz W T 1999 Phys. Rev. A 60 91

[37]

Zhao X, Jing J, Corn B and Yu T 2011 Phys. Rev. A 84 032101

[38]

Chen M and You J Q 2013 Phys. Rev. A 87 052108

[39]

Chen Y, You J Q and Yu T 2014 Phys. Rev. A 90 052104

[40]

Felicetti S, Sanz M, Lamata L, Romero G, Johansson G, Delsing P and Solano E 2014 Phys. Rev. Lett. 113 093602

[41]

Yang Z P, Li Z, Ma S L and Li F L 2017 Phys. Rev. A 96 012327

[42]

Xiang Z L, Ashhab S, You J Q and Nori F 2013 Rev. Mod. Phys. 85 623

[43]

Dalibard J, Castin Y and Molmer K 1992 Phys. Rev. Lett. 68 580

[44]

Wootters W K 1998 Phys. Rev. Lett. 80 2245

[45]

Scully M O and Zubairy M S 1997 Quantum optics (Cambridge: Cambridge University Press)

Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.