Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(6): 060304    DOI: 10.1088/1674-1056/ab84d8
GENERAL Prev   Next  

Non-Markovian entanglement transfer to distant atoms in a coupled superconducting resonator

Qingxia Mu(穆青霞), Peiying Lin(林佩英)
Mathematics and Physics Department, North China Electric Power University, Beijing 102206, China
Abstract  We investigate the non-Markovian effects on the entanglement transfer to the distant non-interacting atom qubits, which are embedded in a coupled superconducting resonator. The master equation governing the dynamics of the system is derived by the non-Markovian quantum state diffusion (NMQSD) method. Based on the solution, we show that the memory effect of the environment can lead to higher entanglement revival and make the entanglement last for a longer time. That is to say, the non-Markovian environment can enhance the entanglement transfer. It is also found that the maximum entanglement transferred to distant atoms can be modified by appropriately selecting the frequency of the modulated inter-cavity coupling. Moreover, with the initial anti-correlated state, the entanglement between the cavity fields can be almost completely transferred to the separated atoms. Lastly, we show that the memory effect has a significant impact on the generation of entanglement from the initial non-entangled states.
Keywords:  non-Markovian      entanglement transfer      quantum state diffusion  
Received:  12 February 2020      Revised:  11 March 2020      Accepted manuscript online: 
PACS:  03.67.Pp (Quantum error correction and other methods for protection against decoherence)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
Fund: Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. 2018MS056) and the National Natural Science Foundation of China (Grant Nos. 11605055 and 11974108).
Corresponding Authors:  Qingxia Mu     E-mail:  qingxiamu@ncepu.edu.cn

Cite this article: 

Qingxia Mu(穆青霞), Peiying Lin(林佩英) Non-Markovian entanglement transfer to distant atoms in a coupled superconducting resonator 2020 Chin. Phys. B 29 060304

[1] Jones J A and Jaksch D 2012 Quantum Information, Computation and Communication (Cambridge: Cambridge University Press)
[2] Pirandola S, Eisert J, Weedbrook C, Furusawa A and Braunstein S L 2015 Nat. Photon. 9 641
[3] Cleve R and Buhrman H 1997 Phys. Rev. A 56 1201
[4] Chen Z H, Zhang F Y, Shi Ying and Song H S 2012 Chin. Phys. Lett. 29 090304
[5] Yang G, Lian B W, Nie M and Jin J 2017 Chin. Phys. B 26 040305
[6] Kim M S and Agarwal G S 1999 Phys. Rev. A 59 3044
[7] Solano E, Agarwal G S and Walther H 2003 Phys. Rev. Lett. 90 027903
[8] Mu Q X, Ma Y H and Zhou L 2010 Phys. Rev. A 81 024301
[9] Akram U, Bowen W P and Milburn G J 2013 New J. Phys. 15 093007
[10] Dehghani A, Mojaveri B, Bahrbeig R J, Nosrati F and Franco R L 2019 J. Opt. Soc. Am. B 36 1858
[11] Chen Y H, Xia Y, Chen Q Q and Song J 2015 Phys. Rev. A 91 012325
[12] Gu X, Kockum A F, Miranowicz A, Liu Y X and Nori F 2017 Phys. Rep. 718-719 1
[13] Wang C, Gao Y Y, Reinhold P, Heeres R W, Ofek N, Chou K, Axline C, REagor M, Blumoff J, Sliwa K M, Frunzio L, Girvin S M, Jiang L, Mirrahimi M, Devoret M H and Schoelkopf R J 2016 Science 352 1087
[14] Ma S L, Xie J K, Li X K and Li F L 2019 Phys. Rev. A 99 042317
[15] Srinivasan S J, Sundaresan N M, Sadri D, Liu Y, Gambetta J M, Yu T, Girvin S M and Houck A A 2014 Phys. Rev. A 89 033857
[16] Axline C J, Burkhart L D, Pfaff W, Zhang M Z, Chou K, Campagne-lbarcq P, Reinhold P, Frunzio L, Girvin S M, Jiang L, Devoret M H and Schoelkopf 2018 Nat. Phys. 14 705
[17] Rosenblum S, Gao Y Y, Reinhold P, Wang C, Axline C J, Frunzio L, Girvin S M, Jiang L, Mirrahimi M, Devoret M H and Schoelkopf R J 2018 Nat. Commun. 9 652
[18] Caruso F, Giovannetti V, Lupo C and Mancini S 2014 Rev. Mod. Phys. 86 1203
[19] Shor P W 1995 Phys. Rev. A 52 R2493
[20] Steane A M 1996 Phys. Rev. Lett. 77 793
[21] Zhao X Y, Hedemann S R and Yu T 2013 Phys. Rev. A 88 022321
[22] Maniscalco S, Francica F, Zaffino R L, Lo Gullo N and Plastina F 2008 Phys. Rev. Lett. 100 090503
[23] De Lange G, Wang Z H, Risté D, Dobrovitski V V and Hanson R 2010 Science 330 60
[24] Breuer H P, Laine E M, Piilo J and Vacchini B 2016 Rev. Mod. Phys. 88 021002
[25] Laine E M, Piilo J and Breuer H P 2010 Phys. Rev. A 81 062115
[26] Wißmann S, Breuer H P and Vacchini B 2015 Phys. Rev. A 92 042108
[27] Shen H Z, Li D X, Su S L, Zhou Y H and Yi X X 2017 Phys. Rev. A 96 033805
[28] Mu Q X, Zhao X Y and Yu T 2016 Phys. Rev. A 94 012334
[29] Cheng J, Zhang W Z, Zhou L and Zhang W 2016 Sci. Rep. 6 23678
[30] Leggio B, Lo Franco R, Soares-Pinto D O, Horodecki P and Compagno G 2015 Phys. Rev. A 92 032311
[31] Costa-Filho J I, Lima R B B, Paiva R R, M P, Morgado W A M, Lo Franco R and Soares-Pinto D O 2017 Phys. Rev. A 95 052126
[32] De Vega I and Alonso D 2017 Rev. Mod. Phys. 89 015001
[33] Mu Q X, Li H, Huang X and Zhao X Y 2018 Opt. Commun. 426 70
[34] Diósi L, Gisin N and Strunz W T 1998 Phys. Rev. A 58 1699
[35] Strunz W T, Diósi L and Gisin N 1999 Phys. Rev. Lett. 82 1801
[36] Yu T, Diósi L, Gisin N and Strunz W T 1999 Phys. Rev. A 60 91
[37] Zhao X, Jing J, Corn B and Yu T 2011 Phys. Rev. A 84 032101
[38] Chen M and You J Q 2013 Phys. Rev. A 87 052108
[39] Chen Y, You J Q and Yu T 2014 Phys. Rev. A 90 052104
[40] Felicetti S, Sanz M, Lamata L, Romero G, Johansson G, Delsing P and Solano E 2014 Phys. Rev. Lett. 113 093602
[41] Yang Z P, Li Z, Ma S L and Li F L 2017 Phys. Rev. A 96 012327
[42] Xiang Z L, Ashhab S, You J Q and Nori F 2013 Rev. Mod. Phys. 85 623
[43] Dalibard J, Castin Y and Molmer K 1992 Phys. Rev. Lett. 68 580
[44] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[45] Scully M O and Zubairy M S 1997 Quantum optics (Cambridge: Cambridge University Press)
[1] Non-Markovianity of an atom in a semi-infinite rectangular waveguide
Jing Zeng(曾静), Yaju Song(宋亚菊), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(3): 030305.
[2] Dissipative dynamics of an entangled three-qubit system via non-Hermitian Hamiltonian: Its correspondence with Markovian and non-Markovian regimes
M Rastegarzadeh and M K Tavassoly. Chin. Phys. B, 2021, 30(3): 034205.
[3] Generating Kerr nonlinearity with an engineered non-Markovian environment
Fei-Lei Xiong(熊飞雷), Wan-Li Yang(杨万里), Mang Feng(冯芒). Chin. Phys. B, 2020, 29(4): 040302.
[4] Dipole-dipole interactions enhance non-Markovianity and protect information against dissipation
Munsif Jan, Xiao-Ye Xu(许小冶), Qin-Qin Wang(王琴琴), Zhe Chen(陈哲), Yong-Jian Han(韩永建), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿). Chin. Phys. B, 2019, 28(9): 090303.
[5] Dynamics of two levitated nanospheres nonlinearly coupling with non-Markovian environment
Xun Li(李逊), Biao Xiong(熊标), Shilei Chao(晁石磊), Jiasen Jin(金家森), Ling Zhou(周玲). Chin. Phys. B, 2019, 28(5): 050302.
[6] Quantifying quantum non-Markovianity via max-relative entropy
Yu Luo(罗宇), Yongming Li(李永明). Chin. Phys. B, 2019, 28(4): 040301.
[7] Dynamics of entanglement protection of two qubits using a driven laser field and detunings: Independent and common, Markovian and/or non-Markovian regimes
S Golkar, M K Tavassoly. Chin. Phys. B, 2018, 27(4): 040303.
[8] Optomechanical state transfer between two distant membranes in the presence of non-Markovian environments
Jiong Cheng(程泂), Xian-Ting Liang(梁先庭), Wen-Zhao Zhang(张闻钊), Xiangmei Duan(段香梅). Chin. Phys. B, 2018, 27(12): 120302.
[9] Non-Markovian speedup dynamics control of the damped Jaynes-Cummings model with detuning
Kai Xu(徐凯), Wei Han(韩伟), Ying-Jie Zhang(张英杰), Heng Fan(范桁). Chin. Phys. B, 2018, 27(1): 010302.
[10] Quantum coherence and non-Markovianity of an atom in a dissipative cavity under weak measurement
Yu Liu(刘禹), Hong-Mei Zou(邹红梅), Mao-Fa Fang(方卯发). Chin. Phys. B, 2018, 27(1): 010304.
[11] Quantum coherence preservation of atom with a classical driving field under non-Markovian environment
De-Ying Gao(高德营), Qiang Gao(高强), Yun-Jie Xia(夏云杰). Chin. Phys. B, 2017, 26(11): 110303.
[12] Discord and entanglement in non-Markovian environments at finite temperatures
Hong-Mei Zou(邹红梅), Mao-Fa Fang(方卯发). Chin. Phys. B, 2016, 25(9): 090302.
[13] Quantum speed limits of a qubit system interacting with a nonequilibrium environment
Zhi He(贺志), Chun-Mei Yao(姚春梅), Li Li(李莉), Qiong Wang(王琼). Chin. Phys. B, 2016, 25(8): 080304.
[14] Collapse-revival of squeezing of two atoms in dissipative cavities
Hong-Mei Zou(邹红梅), Mao-Fa Fang(方卯发). Chin. Phys. B, 2016, 25(7): 070305.
[15] Entanglement and non-Markovianity of a multi-level atom decaying in a cavity
Zi-Long Fan(范子龙), Yu-Kun Ren(任玉坤), Hao-Sheng Zeng(曾浩生). Chin. Phys. B, 2016, 25(1): 010303.
No Suggested Reading articles found!