Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(1): 010302    DOI: 10.1088/1674-1056/27/1/010302
GENERAL Prev   Next  

Non-Markovian speedup dynamics control of the damped Jaynes-Cummings model with detuning

Kai Xu(徐凯)1,2, Wei Han(韩伟)1, Ying-Jie Zhang(张英杰)1, Heng Fan(范桁)2,3
1 Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Department of Physics, Qufu Normal University, Qufu 273165, China;
2 Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
3 Collaborative Innovation Center of Quantum Matter, Beijing 100190, China
Abstract  For a two-level atom in a lossy cavity, a scheme to manipulate the non-Markovian speedup dynamics has been proposed in the controllable environment (the lossy cavity field). We mainly focus on the effects of the qubit-cavity detuning and the qubit-cavity coupling strength κ on the non-Markovian speedup evolution of an open system. By controlling the environment, i.e., tuning and κ, two dynamical crossovers from Markovian to non-Markovian and from no-speedup to speedup are achieved. Furthermore, it is clearly found that increasing the coupling strength κ or detuning in some cases can make the environmental non-Markovianity stronger and hence can lead to faster evolution of the open system.
Keywords:  non-Markovianity      quantum speed limits      open system dynamics  
Received:  14 September 2017      Revised:  16 October 2017      Accepted manuscript online: 
PACS:  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.67.-a (Quantum information)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11647171, 61675115, and 91536108).
Corresponding Authors:  Ying-Jie Zhang     E-mail:  yingjiezhang@mail.qfnu.edu.cn

Cite this article: 

Kai Xu(徐凯), Wei Han(韩伟), Ying-Jie Zhang(张英杰), Heng Fan(范桁) Non-Markovian speedup dynamics control of the damped Jaynes-Cummings model with detuning 2018 Chin. Phys. B 27 010302

[1] Breuer H P and Petruccione F 2002 Theory of Open Quantum Systems (New York: Oxford University Press) p. 472
[2] Ma T T, Chen Y S, Chen T, Hedemann S R and Yu T 2014 Phys. Rev. A 90 042108
[3] Li J G, Zou J and Shao B 2010 Phys. Rev. A 81 062124
[4] An J H and Zhang W M 2007 Phys. Rev. A 76 042127
[5] Paz J P and Roncaglia A J 2008 Phys. Rev. Lett. 100 220401
[6] Paz J P and Roncaglia A J 2009 Phys. Rev. A 79 032102
[7] Wolf M M, Eisert J, Cubitt T S and Cirac J I 2008 Phys. Rev. Lett. 101 150402
[8] Tu M W Y and Zhang W M 2008 Phys. Rev. B 78 235311
[9] Breuer H P, Laine E M and Piilo J 2009 Phys. Rev. Lett. 103 210401
[10] Breuer H P, Laine E M, Piilo J, Laine E M, Piilo J and Breuer H P 2010 Phys. Rev. A 81 062115
[11] Chruscinski D and Kossakowski A 2010 Phys. Rev. Lett. 104 070406
[12] Chruscinski D, Kossakowski A and Rivas A 2011 Phys. Rev. A 83 052128
[13] Xiong H N, Zhang W M, Wang X and M H Wu 2010 Phys. Rev. A 82 012105
[14] Lei C U and Zhang W M 2011 Phys. Rev. A 84 052116
[15] Rivas A, Huelga S F and Plenio M B 2010 Phys. Rev. Lett. 105 050403
[16] Znidaric M, Pineda C and Garcia-Mata I 2011 Phys. Rev. Lett. 107 080404
[17] Zhang W M, Lo P Y, Xiong H N, Tu M W Y and Nori F 2012 Phys. Rev. Lett. 109 170402
[18] Liu B H, Li L, Huang Y F, Li C F, Guo G C, Laine E M, Breuer H P and Piilo J 2011 Nat. Phys. 7 931
[19] Madsen K H, Ates S, Lund-Hansen T, Loffler A, Reitzenstein S, Forchel A and Lodahl P 2011 Phys. Rev. Lett. 106 233601
[20] Tang J S, Li C F, Li Y L, Zou X B, Guo G C, Breuer H P, Laine E M and Piilo J 2012 Europhys. Lett. 97 10002
[21] Zhang Y J, Zou X B, Xia Y J and Guo G C 2010 Phys. Rev. A 82 022108
[22] Addis C, Brebner G, Haikka P and Maniscalco S 2014 Phys. Rev. A 89 024101
[23] Zhang Y J, Han W, Xia Y J, Yu Y M and Fan H 2015 Sci. Rep. 5 13359
[24] Deffner S and Lutz E 2013 Phys. Rev. Lett. 111 010402
[25] Zhang Y J, Han W, Xia Y J, Cao J P and Fan H 2014 Sci. Rep. 4 4890
[26] Xu Z Y, Luo S, Yang W L, Liu C and Zhu S Q 2014 Phys. Rev. A 89 012307
[27] Cimmarusti A D, Yan Z, Patterson B D, Corcos L P, Orozco L A and Deffner S 2015 Phys. Rev. Lett. 114 233602
[28] Liu H B, Yang W L, An J H and Xu Z Y 2016 Phys. Rev. A 93 020105(R)
[29] Zhang Y J, Han W, Xia Y J, Cao J P and Fan H 2015 Phys. Rev. A 91 032112
[30] Zhang Y J, Xia Y J and Fan H 2016 Europhys. Lett 116 30001
[31] Yang G, Lian B W, Nie M and Jin J 2017 Chin. Phys. B 26 040305
[32] Wang X, Chen H, Chen Y L and Hong R L 2017 Chin. Phys. B 26 037105
[33] Wang Y M, Li J G, Zou J and Xu B M 2016 Chin. Phys. B 25 120302
[34] Ladd T D, Jelezko F, Laflamme R, Nakamura Y, Monroe C and O'Brien J L 2010 Nature 464 45
[35] Xiang Z L, Ashhab S, You J and Nori F 2013 Rev. Mod. Phys. 85 623
[36] Bennett C H and Divincenzo D P 2000 Nature 404 247
[37] Xu J S, Sun K, Li C F, Xu X Y, Guo G C, Andersson E, Lo Franco R and G Compagno 2013 Nat. Commun. 4 2851
[38] Aaronson B, Lo Franco R and Adesso G 2013 Phys. Rev. A 88 012120
[39] Duan L M, Lukin M D, Cirac J I and Zoller P 2001 Nature 414 413
[40] Xue S B, Wu R B, Zhang W M, Zhang J, Li C W and Tarn T J 2012 Phys. Rev. A 86 052304
[41] Lorenzo S, Plastina F and Paternostro M 2013 Phys. Rev. A 88 020102(R)
[42] Luo S, Fu S and Song H 2012 Phys. Rev. A 86 044101
[43] Lu X M, Wang X and Sun C P 2010 Phys. Rev. A 82 042103
[44] Chruscinski D and Maniscalco S 2014 Phys. Rev. Lett. 112 120404
[45] Addis C, Bylicka B, Chruscinski D and Maniscalco S 2014 Phys. Rev. A 90 052103
[46] Ali M M, Lo P Y, Tu M W Y and Zhang W M 2015 Phys. Rev. A 92 062306
[47] Mandelstam L and Tamm I 1945 J. Phys. (USSR) 9 249
[48] Vaidman L and Am 1992 J. Phys. 60 182
[49] Margolus N and Levitin L B 1998 Phys. D 120 188
[50] Levitin L B and Toffoli T 2009 Phys. Rev. Lett. 103 160502
[51] Giovannetti V, Lloyd S and Maccone L 2003 Phys. Rev. A 67 052109
[52] Jones P J and Kok P 2010 Phys. Rev. A 82 022107
[53] Taddei M M, Escher B M, Davidovich L and de Matos Filho R L 2013 Phys. Rev. Lett. 110 050402
[54] del Campo A, Egusquiza I L, Plenio M B and Huelga S F 2013 Phys. Rev. Lett. 110 050403
[1] Non-Markovianity of an atom in a semi-infinite rectangular waveguide
Jing Zeng(曾静), Yaju Song(宋亚菊), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(3): 030305.
[2] Quantum speed limit of the double quantum dot in pure dephasing environment under measurement
Zhenyu Lin(林振宇), Tian Liu(刘天), Zongliang Li(李宗良), Yanhui Zhang(张延惠), and Kang Lan(蓝康). Chin. Phys. B, 2022, 31(7): 070307.
[3] Generating Kerr nonlinearity with an engineered non-Markovian environment
Fei-Lei Xiong(熊飞雷), Wan-Li Yang(杨万里), Mang Feng(冯芒). Chin. Phys. B, 2020, 29(4): 040302.
[4] Dipole-dipole interactions enhance non-Markovianity and protect information against dissipation
Munsif Jan, Xiao-Ye Xu(许小冶), Qin-Qin Wang(王琴琴), Zhe Chen(陈哲), Yong-Jian Han(韩永建), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿). Chin. Phys. B, 2019, 28(9): 090303.
[5] Dynamics of two levitated nanospheres nonlinearly coupling with non-Markovian environment
Xun Li(李逊), Biao Xiong(熊标), Shilei Chao(晁石磊), Jiasen Jin(金家森), Ling Zhou(周玲). Chin. Phys. B, 2019, 28(5): 050302.
[6] Quantum speed limits of a qubit system interacting with a nonequilibrium environment
Zhi He(贺志), Chun-Mei Yao(姚春梅), Li Li(李莉), Qiong Wang(王琼). Chin. Phys. B, 2016, 25(8): 080304.
[7] Entanglement and non-Markovianity of a multi-level atom decaying in a cavity
Zi-Long Fan(范子龙), Yu-Kun Ren(任玉坤), Hao-Sheng Zeng(曾浩生). Chin. Phys. B, 2016, 25(1): 010303.
[8] Rotation of Bloch sphere induced by Lamb shift in open two-level systems
Wang Guo-You (王国友), Tang Ning (唐宁), Liu Ying (刘颖), Zeng Hao-Sheng (曾浩生). Chin. Phys. B, 2015, 24(5): 050302.
[9] Non-Markovianity of a qubit coupled with an isotropic Lipkin-Meshkov-Glick bath
Tian Li-Jun (田立君), Ti Min-Min (提敏敏), Zhai Xiang-Dong (翟向东). Chin. Phys. B, 2015, 24(10): 100305.
[10] Entanglement and non-Markovianity of a spin-S system in a dephasing environment
Fan Zi-Long (范子龙), Tian Jing (田晶), Zeng Hao-Sheng (曾浩生). Chin. Phys. B, 2014, 23(6): 060303.
[11] Comparison between non-Markovian dynamics with and without rotating wave approximation
Tang Ning (唐宁), Xu Tian-Tian (徐甜甜), Zeng Hao-Sheng (曾浩生). Chin. Phys. B, 2013, 22(3): 030304.
[12] Distribution of non-Markovian intervals for open qubit systems
Zheng Yan-Ping(郑艳萍), Tang Ning(唐宁), Wang Guo-You(王国友), and Zeng Hao-Sheng(曾浩生) . Chin. Phys. B, 2011, 20(11): 110301.
No Suggested Reading articles found!