|
|
Non-Markovian speedup dynamics control of the damped Jaynes-Cummings model with detuning |
Kai Xu(徐凯)1,2, Wei Han(韩伟)1, Ying-Jie Zhang(张英杰)1, Heng Fan(范桁)2,3 |
1 Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Department of Physics, Qufu Normal University, Qufu 273165, China; 2 Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 3 Collaborative Innovation Center of Quantum Matter, Beijing 100190, China |
|
|
Abstract For a two-level atom in a lossy cavity, a scheme to manipulate the non-Markovian speedup dynamics has been proposed in the controllable environment (the lossy cavity field). We mainly focus on the effects of the qubit-cavity detuning △ and the qubit-cavity coupling strength κ on the non-Markovian speedup evolution of an open system. By controlling the environment, i.e., tuning △ and κ, two dynamical crossovers from Markovian to non-Markovian and from no-speedup to speedup are achieved. Furthermore, it is clearly found that increasing the coupling strength κ or detuning △ in some cases can make the environmental non-Markovianity stronger and hence can lead to faster evolution of the open system.
|
Received: 14 September 2017
Revised: 16 October 2017
Accepted manuscript online:
|
PACS:
|
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
03.67.-a
|
(Quantum information)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11647171, 61675115, and 91536108). |
Corresponding Authors:
Ying-Jie Zhang
E-mail: yingjiezhang@mail.qfnu.edu.cn
|
Cite this article:
Kai Xu(徐凯), Wei Han(韩伟), Ying-Jie Zhang(张英杰), Heng Fan(范桁) Non-Markovian speedup dynamics control of the damped Jaynes-Cummings model with detuning 2018 Chin. Phys. B 27 010302
|
[1] |
Breuer H P and Petruccione F 2002 Theory of Open Quantum Systems (New York: Oxford University Press) p. 472
|
[2] |
Ma T T, Chen Y S, Chen T, Hedemann S R and Yu T 2014 Phys. Rev. A 90 042108
|
[3] |
Li J G, Zou J and Shao B 2010 Phys. Rev. A 81 062124
|
[4] |
An J H and Zhang W M 2007 Phys. Rev. A 76 042127
|
[5] |
Paz J P and Roncaglia A J 2008 Phys. Rev. Lett. 100 220401
|
[6] |
Paz J P and Roncaglia A J 2009 Phys. Rev. A 79 032102
|
[7] |
Wolf M M, Eisert J, Cubitt T S and Cirac J I 2008 Phys. Rev. Lett. 101 150402
|
[8] |
Tu M W Y and Zhang W M 2008 Phys. Rev. B 78 235311
|
[9] |
Breuer H P, Laine E M and Piilo J 2009 Phys. Rev. Lett. 103 210401
|
[10] |
Breuer H P, Laine E M, Piilo J, Laine E M, Piilo J and Breuer H P 2010 Phys. Rev. A 81 062115
|
[11] |
Chruscinski D and Kossakowski A 2010 Phys. Rev. Lett. 104 070406
|
[12] |
Chruscinski D, Kossakowski A and Rivas A 2011 Phys. Rev. A 83 052128
|
[13] |
Xiong H N, Zhang W M, Wang X and M H Wu 2010 Phys. Rev. A 82 012105
|
[14] |
Lei C U and Zhang W M 2011 Phys. Rev. A 84 052116
|
[15] |
Rivas A, Huelga S F and Plenio M B 2010 Phys. Rev. Lett. 105 050403
|
[16] |
Znidaric M, Pineda C and Garcia-Mata I 2011 Phys. Rev. Lett. 107 080404
|
[17] |
Zhang W M, Lo P Y, Xiong H N, Tu M W Y and Nori F 2012 Phys. Rev. Lett. 109 170402
|
[18] |
Liu B H, Li L, Huang Y F, Li C F, Guo G C, Laine E M, Breuer H P and Piilo J 2011 Nat. Phys. 7 931
|
[19] |
Madsen K H, Ates S, Lund-Hansen T, Loffler A, Reitzenstein S, Forchel A and Lodahl P 2011 Phys. Rev. Lett. 106 233601
|
[20] |
Tang J S, Li C F, Li Y L, Zou X B, Guo G C, Breuer H P, Laine E M and Piilo J 2012 Europhys. Lett. 97 10002
|
[21] |
Zhang Y J, Zou X B, Xia Y J and Guo G C 2010 Phys. Rev. A 82 022108
|
[22] |
Addis C, Brebner G, Haikka P and Maniscalco S 2014 Phys. Rev. A 89 024101
|
[23] |
Zhang Y J, Han W, Xia Y J, Yu Y M and Fan H 2015 Sci. Rep. 5 13359
|
[24] |
Deffner S and Lutz E 2013 Phys. Rev. Lett. 111 010402
|
[25] |
Zhang Y J, Han W, Xia Y J, Cao J P and Fan H 2014 Sci. Rep. 4 4890
|
[26] |
Xu Z Y, Luo S, Yang W L, Liu C and Zhu S Q 2014 Phys. Rev. A 89 012307
|
[27] |
Cimmarusti A D, Yan Z, Patterson B D, Corcos L P, Orozco L A and Deffner S 2015 Phys. Rev. Lett. 114 233602
|
[28] |
Liu H B, Yang W L, An J H and Xu Z Y 2016 Phys. Rev. A 93 020105(R)
|
[29] |
Zhang Y J, Han W, Xia Y J, Cao J P and Fan H 2015 Phys. Rev. A 91 032112
|
[30] |
Zhang Y J, Xia Y J and Fan H 2016 Europhys. Lett 116 30001
|
[31] |
Yang G, Lian B W, Nie M and Jin J 2017 Chin. Phys. B 26 040305
|
[32] |
Wang X, Chen H, Chen Y L and Hong R L 2017 Chin. Phys. B 26 037105
|
[33] |
Wang Y M, Li J G, Zou J and Xu B M 2016 Chin. Phys. B 25 120302
|
[34] |
Ladd T D, Jelezko F, Laflamme R, Nakamura Y, Monroe C and O'Brien J L 2010 Nature 464 45
|
[35] |
Xiang Z L, Ashhab S, You J and Nori F 2013 Rev. Mod. Phys. 85 623
|
[36] |
Bennett C H and Divincenzo D P 2000 Nature 404 247
|
[37] |
Xu J S, Sun K, Li C F, Xu X Y, Guo G C, Andersson E, Lo Franco R and G Compagno 2013 Nat. Commun. 4 2851
|
[38] |
Aaronson B, Lo Franco R and Adesso G 2013 Phys. Rev. A 88 012120
|
[39] |
Duan L M, Lukin M D, Cirac J I and Zoller P 2001 Nature 414 413
|
[40] |
Xue S B, Wu R B, Zhang W M, Zhang J, Li C W and Tarn T J 2012 Phys. Rev. A 86 052304
|
[41] |
Lorenzo S, Plastina F and Paternostro M 2013 Phys. Rev. A 88 020102(R)
|
[42] |
Luo S, Fu S and Song H 2012 Phys. Rev. A 86 044101
|
[43] |
Lu X M, Wang X and Sun C P 2010 Phys. Rev. A 82 042103
|
[44] |
Chruscinski D and Maniscalco S 2014 Phys. Rev. Lett. 112 120404
|
[45] |
Addis C, Bylicka B, Chruscinski D and Maniscalco S 2014 Phys. Rev. A 90 052103
|
[46] |
Ali M M, Lo P Y, Tu M W Y and Zhang W M 2015 Phys. Rev. A 92 062306
|
[47] |
Mandelstam L and Tamm I 1945 J. Phys. (USSR) 9 249
|
[48] |
Vaidman L and Am 1992 J. Phys. 60 182
|
[49] |
Margolus N and Levitin L B 1998 Phys. D 120 188
|
[50] |
Levitin L B and Toffoli T 2009 Phys. Rev. Lett. 103 160502
|
[51] |
Giovannetti V, Lloyd S and Maccone L 2003 Phys. Rev. A 67 052109
|
[52] |
Jones P J and Kok P 2010 Phys. Rev. A 82 022107
|
[53] |
Taddei M M, Escher B M, Davidovich L and de Matos Filho R L 2013 Phys. Rev. Lett. 110 050402
|
[54] |
del Campo A, Egusquiza I L, Plenio M B and Huelga S F 2013 Phys. Rev. Lett. 110 050403
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|