|
|
Dynamics of two levitated nanospheres nonlinearly coupling with non-Markovian environment |
Xun Li(李逊), Biao Xiong(熊标), Shilei Chao(晁石磊), Jiasen Jin(金家森), Ling Zhou(周玲) |
School of Physics, Dalian University of Technology, Dalian 116026, China |
|
|
Abstract The dynamics of two nanospheres nonlinearly coupling with non-Markovian reservoir is investigated. A master equation of the two nanospheres is derived by employing quantum state diffusion method. It is shown that the nonlinear coupling can improve the non-Markovianity. Due to the sharing of the common non-Markovian environment, the state transfer between the two nanospheres can be realized. The entanglement and the squeezing of the individual mode, as well as the jointed two-mode are analyzed. The present system can be realized by trapping two nanospheres in a wideband cavity, which might provide a method to study adjustable non-Markovian dynamics of mechanical motion.
|
Received: 06 January 2019
Revised: 11 March 2019
Accepted manuscript online:
|
PACS:
|
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
42.50.Lc
|
(Quantum fluctuations, quantum noise, and quantum jumps)
|
|
42.50.-p
|
(Quantum optics)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874099, 11605022, 11775040, 11747317, and 11474044). |
Corresponding Authors:
Jiasen Jin, Ling Zhou
E-mail: jsjin@dlut.edu.cn;zhlhxn@dlut.edu.cn
|
Cite this article:
Xun Li(李逊), Biao Xiong(熊标), Shilei Chao(晁石磊), Jiasen Jin(金家森), Ling Zhou(周玲) Dynamics of two levitated nanospheres nonlinearly coupling with non-Markovian environment 2019 Chin. Phys. B 28 050302
|
[1] |
Jochim S, Bartenstein M, Altmeyer A, Hendl G, Riedl S, Chin C, Hecker Denschlag J and Grimm R 2003 Science 302 2101
|
[2] |
Barrett M D, Sauer J A and Chapman M S 2001 Phys. Rev. Lett. 87 010404
|
[3] |
Zippilli S and Morigi G 2005 Phys. Rev. Lett. 95 143001
|
[4] |
Yi Z, Li G X and Yang Y P 2013 Phys. Rev. A 87 053408
|
[5] |
Rashid M, Tufarelli T, Bateman J, Vovrosh J, Hempston D, Kim M S and Ulbricht H 2016 Phys. Rev. Lett. 117 273601
|
[6] |
Monroe C, Meekhof D M, King B E and Wineland D J 1996 Science 272 1131
|
[7] |
Abdi M, Degenfeld-Schonburg P, Sameti M, Navarrete-Benlloch C and Hartmann M J 2016 Phys. Rev. Lett. 116 233604
|
[8] |
Zheng S B 2004 Phys. Rev. A 69 055801
|
[9] |
Welte S, Hacker B, Daiss S, Ritter S and Rempe G 2017 Phys. Rev. Lett. 118 210503
|
[10] |
Roghani M, Helm H and Breuer H P 2011 Phys. Rev. Lett. 106 040502
|
[11] |
Li T, Kheifets S and Raizen M G 2011 Nat. Phys. 7 527
|
[12] |
Fonseca P Z G, Aranas E B, Millen J, Monteiro T S and Barker P F 2016 Phys. Rev. Lett. 117 173602
|
[13] |
Millen J, Fonseca P Z, Mavrogordatos T, Monteiro T S and Barker P F 2015 Phys. Rev. Lett. 114 243601
|
[14] |
Zhang S, Wu W, Wu C W, Li F G, Li T, Wang X and Bao W S 2017 Chin. Phys. B 26 074205
|
[15] |
Jain V, Gieseler J, Moritz C, Dellago C, Quidant R and Novotny L 2016 Phys. Rev. Lett. 116 243601
|
[16] |
Monteiro T S, Millen J, Pender G A T, Marquardt F, Chang D and Barker P F 2013 New J. Phys. 15 015001
|
[17] |
Gieseler J, Novotny L and Quidant R 2013 Nat. Phys. 9 806
|
[18] |
Voje A, Croy A and Isacsson A 2015 Phys. Rev. A 92 012313
|
[19] |
Duarte O S and Caldeira A O 2009 Phys. Rev. A 80 032110
|
[20] |
Nakajima S 1958 Prog. Theor. Phys. 20 948
|
[21] |
Zwanzig R 1960 J. Chem. Phys. 33 1338
|
[22] |
Hu B L, Paz J P and Zhang Y 1992 Phys. Rev. D 45 2843
|
[23] |
Zhang W M, Lo P Y, Xiong H N, Tu M W Y and Nori F 2012 Phys. Rev. Lett. 109 170402
|
[24] |
Cheng J, Liang X T, Zhang W Z and Duan X 2018 Chin. Phys. B 27 120302
|
[25] |
Cavina V, Mari A and Giovannetti V 2017 Phys. Rev. Lett. 119 050601
|
[26] |
Piilo J, Maniscalco S, Härkönen K and Suominen K A 2008 Phys. Rev. Lett. 100 180402
|
[27] |
Strunz W T, Diosi L, Gisin N and Yu T 1999 Phys. Rev. Lett. 83 4909
|
[28] |
Megier N, Strunz W T, Viviescas C and Luoma K 2018 Phys. Rev. Lett. 120 150402
|
[29] |
Zhao X, Hedemann S R and Yu T 2013 Phys. Rev. A 88 022321
|
[30] |
Jing J and Yu T 2010 Phys. Rev. Lett. 105 240403
|
[31] |
Milord L, Gerelli E, Jamois C, Harouri A, Chevalier C, Viktorovitch P, Letartre X and Benyattou T 2015 Appl. Phys. Lett. 106 121110
|
[32] |
Tan H T, Zhang W M and Li G X 2011 Phys. Rev. A 83 062310
|
[33] |
Strunz W T and Yu T 2004 Phys. Rev. A 69 052115
|
[34] |
Yu T, Diósi L, Gisin N and Strunz W T 2000 Phys. Lett. A 265 331
|
[35] |
Fuchs C A and Caves C M 1994 Phys. Rev. Lett. 73 3047
|
[36] |
Breuer H P, Laine E M and Piilo J 2009 Phys. Rev. Lett. 103 210401
|
[37] |
Breuer H P, Laine E M, Piilo J and Vacchini B 2016 Rev. Mod. Phys. 88 021002
|
[38] |
Hou S C, Liang S L and Yi X X 2015 Phys. Rev. A 91 012109
|
[39] |
Ali M M, Lo P Y, Tu M W Y and Zhang W M 2015 Phys. Rev. A 92 062306
|
[40] |
Cheng J, Zhang W Z, Zhou L and Zhang W 2016 Sci. Rep. 6 23678
|
[41] |
Mu Q, Zhao X and Yu T 2016 Phys. Rev. A 94 012334
|
[42] |
Golkar M K T 2018 Chin. Phys. B 27 40303
|
[43] |
Wen J 2018 Chin. Phys. Lett. 35 060301
|
[44] |
Ashkin A 1970 Phys. Rev. Lett. 24 156
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|