Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(5): 050302    DOI: 10.1088/1674-1056/28/5/050302
GENERAL Prev   Next  

Dynamics of two levitated nanospheres nonlinearly coupling with non-Markovian environment

Xun Li(李逊), Biao Xiong(熊标), Shilei Chao(晁石磊), Jiasen Jin(金家森), Ling Zhou(周玲)
School of Physics, Dalian University of Technology, Dalian 116026, China
Abstract  

The dynamics of two nanospheres nonlinearly coupling with non-Markovian reservoir is investigated. A master equation of the two nanospheres is derived by employing quantum state diffusion method. It is shown that the nonlinear coupling can improve the non-Markovianity. Due to the sharing of the common non-Markovian environment, the state transfer between the two nanospheres can be realized. The entanglement and the squeezing of the individual mode, as well as the jointed two-mode are analyzed. The present system can be realized by trapping two nanospheres in a wideband cavity, which might provide a method to study adjustable non-Markovian dynamics of mechanical motion.

Keywords:  non-Markovianity      levitated nanospheres      nonlinearity  
Received:  06 January 2019      Revised:  11 March 2019      Accepted manuscript online: 
PACS:  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  42.50.Lc (Quantum fluctuations, quantum noise, and quantum jumps)  
  42.50.-p (Quantum optics)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11874099, 11605022, 11775040, 11747317, and 11474044).

Corresponding Authors:  Jiasen Jin, Ling Zhou     E-mail:  jsjin@dlut.edu.cn;zhlhxn@dlut.edu.cn

Cite this article: 

Xun Li(李逊), Biao Xiong(熊标), Shilei Chao(晁石磊), Jiasen Jin(金家森), Ling Zhou(周玲) Dynamics of two levitated nanospheres nonlinearly coupling with non-Markovian environment 2019 Chin. Phys. B 28 050302

[1] Jochim S, Bartenstein M, Altmeyer A, Hendl G, Riedl S, Chin C, Hecker Denschlag J and Grimm R 2003 Science 302 2101
[2] Barrett M D, Sauer J A and Chapman M S 2001 Phys. Rev. Lett. 87 010404
[3] Zippilli S and Morigi G 2005 Phys. Rev. Lett. 95 143001
[4] Yi Z, Li G X and Yang Y P 2013 Phys. Rev. A 87 053408
[5] Rashid M, Tufarelli T, Bateman J, Vovrosh J, Hempston D, Kim M S and Ulbricht H 2016 Phys. Rev. Lett. 117 273601
[6] Monroe C, Meekhof D M, King B E and Wineland D J 1996 Science 272 1131
[7] Abdi M, Degenfeld-Schonburg P, Sameti M, Navarrete-Benlloch C and Hartmann M J 2016 Phys. Rev. Lett. 116 233604
[8] Zheng S B 2004 Phys. Rev. A 69 055801
[9] Welte S, Hacker B, Daiss S, Ritter S and Rempe G 2017 Phys. Rev. Lett. 118 210503
[10] Roghani M, Helm H and Breuer H P 2011 Phys. Rev. Lett. 106 040502
[11] Li T, Kheifets S and Raizen M G 2011 Nat. Phys. 7 527
[12] Fonseca P Z G, Aranas E B, Millen J, Monteiro T S and Barker P F 2016 Phys. Rev. Lett. 117 173602
[13] Millen J, Fonseca P Z, Mavrogordatos T, Monteiro T S and Barker P F 2015 Phys. Rev. Lett. 114 243601
[14] Zhang S, Wu W, Wu C W, Li F G, Li T, Wang X and Bao W S 2017 Chin. Phys. B 26 074205
[15] Jain V, Gieseler J, Moritz C, Dellago C, Quidant R and Novotny L 2016 Phys. Rev. Lett. 116 243601
[16] Monteiro T S, Millen J, Pender G A T, Marquardt F, Chang D and Barker P F 2013 New J. Phys. 15 015001
[17] Gieseler J, Novotny L and Quidant R 2013 Nat. Phys. 9 806
[18] Voje A, Croy A and Isacsson A 2015 Phys. Rev. A 92 012313
[19] Duarte O S and Caldeira A O 2009 Phys. Rev. A 80 032110
[20] Nakajima S 1958 Prog. Theor. Phys. 20 948
[21] Zwanzig R 1960 J. Chem. Phys. 33 1338
[22] Hu B L, Paz J P and Zhang Y 1992 Phys. Rev. D 45 2843
[23] Zhang W M, Lo P Y, Xiong H N, Tu M W Y and Nori F 2012 Phys. Rev. Lett. 109 170402
[24] Cheng J, Liang X T, Zhang W Z and Duan X 2018 Chin. Phys. B 27 120302
[25] Cavina V, Mari A and Giovannetti V 2017 Phys. Rev. Lett. 119 050601
[26] Piilo J, Maniscalco S, Härkönen K and Suominen K A 2008 Phys. Rev. Lett. 100 180402
[27] Strunz W T, Diosi L, Gisin N and Yu T 1999 Phys. Rev. Lett. 83 4909
[28] Megier N, Strunz W T, Viviescas C and Luoma K 2018 Phys. Rev. Lett. 120 150402
[29] Zhao X, Hedemann S R and Yu T 2013 Phys. Rev. A 88 022321
[30] Jing J and Yu T 2010 Phys. Rev. Lett. 105 240403
[31] Milord L, Gerelli E, Jamois C, Harouri A, Chevalier C, Viktorovitch P, Letartre X and Benyattou T 2015 Appl. Phys. Lett. 106 121110
[32] Tan H T, Zhang W M and Li G X 2011 Phys. Rev. A 83 062310
[33] Strunz W T and Yu T 2004 Phys. Rev. A 69 052115
[34] Yu T, Diósi L, Gisin N and Strunz W T 2000 Phys. Lett. A 265 331
[35] Fuchs C A and Caves C M 1994 Phys. Rev. Lett. 73 3047
[36] Breuer H P, Laine E M and Piilo J 2009 Phys. Rev. Lett. 103 210401
[37] Breuer H P, Laine E M, Piilo J and Vacchini B 2016 Rev. Mod. Phys. 88 021002
[38] Hou S C, Liang S L and Yi X X 2015 Phys. Rev. A 91 012109
[39] Ali M M, Lo P Y, Tu M W Y and Zhang W M 2015 Phys. Rev. A 92 062306
[40] Cheng J, Zhang W Z, Zhou L and Zhang W 2016 Sci. Rep. 6 23678
[41] Mu Q, Zhao X and Yu T 2016 Phys. Rev. A 94 012334
[42] Golkar M K T 2018 Chin. Phys. B 27 40303
[43] Wen J 2018 Chin. Phys. Lett. 35 060301
[44] Ashkin A 1970 Phys. Rev. Lett. 24 156
[1] Non-Markovianity of an atom in a semi-infinite rectangular waveguide
Jing Zeng(曾静), Yaju Song(宋亚菊), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(3): 030305.
[2] Influence of optical nonlinearity on combining efficiency in ultrashort pulse fiber laser coherent combining system
Yun-Chen Zhu(朱云晨), Ping-Xue Li(李平雪), Chuan-Fei Yao(姚传飞), Chun-Yong Li(李春勇),Wen-Hao Xiong(熊文豪), and Shun Li(李舜). Chin. Phys. B, 2022, 31(6): 064201.
[3] Generation of mid-infrared supercontinuum by designing circular photonic crystal fiber
Ying Huang(黄颖), Hua Yang(杨华), and Yucheng Mao(毛雨澄). Chin. Phys. B, 2022, 31(5): 054211.
[4] Measurement-device-independent quantum secret sharing with hyper-encoding
Xing-Xing Ju(居星星), Wei Zhong(钟伟), Yu-Bo Sheng(盛宇波), and Lan Zhou(周澜). Chin. Phys. B, 2022, 31(10): 100302.
[5] Anti-$\mathcal{PT}$-symmetric Kerr gyroscope
Huilai Zhang(张会来), Meiyu Peng(彭美瑜), Xun-Wei Xu(徐勋卫), and Hui Jing(景辉). Chin. Phys. B, 2022, 31(1): 014215.
[6] Microcrack localization using a collinear Lamb wave frequency-mixing technique in a thin plate
Ji-Shuo Wang(王积硕), Cai-Bin Xu(许才彬), You-Xuan Zhao(赵友选), Ning Hu(胡宁), and Ming-Xi Deng(邓明晰). Chin. Phys. B, 2022, 31(1): 014301.
[7] Optical solitons supported by finite waveguide lattices with diffusive nonlocal nonlinearity
Changming Huang(黄长明), Hanying Deng(邓寒英), Liangwei Dong(董亮伟), Ce Shang(尚策), Bo Zhao(赵波), Qiangbo Suo(索强波), and Xiaofang Zhou(周小芳). Chin. Phys. B, 2021, 30(12): 124204.
[8] Propagations of Fresnel diffraction accelerating beam in Schrödinger equation with nonlocal nonlinearity
Yagang Zhang(张亚港), Yuheng Pei(裴宇恒), Yibo Yuan(袁一博), Feng Wen(问峰), Yuzong Gu(顾玉宗), and Zhenkun Wu(吴振坤). Chin. Phys. B, 2021, 30(11): 114209.
[9] Generating Kerr nonlinearity with an engineered non-Markovian environment
Fei-Lei Xiong(熊飞雷), Wan-Li Yang(杨万里), Mang Feng(冯芒). Chin. Phys. B, 2020, 29(4): 040302.
[10] Unconventional photon blockade in a three-mode system with double second-order nonlinear coupling
Hong-Yu Lin(林宏宇), Hui Yang(杨慧), and Zhi-Hai Yao(姚治海). Chin. Phys. B, 2020, 29(12): 120304.
[11] Dipole-dipole interactions enhance non-Markovianity and protect information against dissipation
Munsif Jan, Xiao-Ye Xu(许小冶), Qin-Qin Wang(王琴琴), Zhe Chen(陈哲), Yong-Jian Han(韩永建), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿). Chin. Phys. B, 2019, 28(9): 090303.
[12] Modeling and identification of magnetostrictive hysteresis with a modified rate-independent Prandtl-Ishlinskii model
Wei Wang(王伟), Jun-en Yao(姚骏恩). Chin. Phys. B, 2018, 27(9): 098503.
[13] Exact solitary wave solutions of a nonlinear Schrödinger equation model with saturable-like nonlinearities governing modulated waves in a discrete electrical lattice
Serge Bruno Yamgoué, Guy Roger Deffo, Eric Tala-Tebue, François Beceau Pelap. Chin. Phys. B, 2018, 27(12): 126303.
[14] Surface plasmon polariton at the interface of dielectric and graphene medium using Kerr effect
Bakhtawar, Muhammad Haneef, B A Bacha, H Khan, M Atif. Chin. Phys. B, 2018, 27(11): 114215.
[15] Design of photonic crystal fiber with elliptical air-holes to achieve simultaneous high birefringence and nonlinearity
Min Liu(刘敏), Jingyun Hou(侯静云), Xu Yang(杨虚), Bingyue Zhao(赵昺玥), Ping Shum. Chin. Phys. B, 2018, 27(1): 014206.
No Suggested Reading articles found!