Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(4): 040303    DOI: 10.1088/1674-1056/27/4/040303
GENERAL Prev   Next  

Dynamics of entanglement protection of two qubits using a driven laser field and detunings: Independent and common, Markovian and/or non-Markovian regimes

S Golkar, M K Tavassoly
Atomic and Molecular Group, Faculty of Physics, Yazd University, Yazd 89195-741, Iran
Abstract  Preventing quantum entanglement from decoherence effect is of theoretical and practical importance in the quantum information processing technologies. In this regard, we consider the entanglement dynamics of two identical qubits where the qubits which are coupled to two independent (Markovian and/or non-Markovian) as well as a common reservoir at zero temperature are further interacted with a classical driving laser field. Then, we study the preservation of generated two-qubit entanglement in various situations using the concurrence measure. It is shown that by applying the classical driving field and so the possibility of controlling the Rabi frequency, the amount of entanglement of the two-qubit system is improved in the off-resonance condition between the qubit and the central cavity frequencies (central detuning) in both non-Markovian and Markovian reservoirs. While the central detuning has a constructive role, the detuning between the qubit and the classical field (laser detuning) affects negatively on the entanglement protection. The obtained results show that long-living entanglement in the non-Markovian reservoir is more accessible than in the Markovian reservoir. We demonstrate that, in a common reservoir non-zero stationary entanglement is achievable whenever the two-qubit system is coupled to the reservoir with appropriate values of relative coupling strengths.
Keywords:  entanglement      Markovian and non-Markovian reservoir      Rabi frequency      concurrence  
Received:  11 November 2017      Revised:  29 January 2018      Accepted manuscript online: 
PACS:  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.67.Bg (Entanglement production and manipulation)  
Corresponding Authors:  M K Tavassoly     E-mail:  mktavassoly@yazd.ac.ir

Cite this article: 

S Golkar, M K Tavassoly Dynamics of entanglement protection of two qubits using a driven laser field and detunings: Independent and common, Markovian and/or non-Markovian regimes 2018 Chin. Phys. B 27 040303

[1] Nielsen M A and Chuang I L 2002 Quantum Computation and Quantum Information (Cambridge:Cambridge University Press)
[2] Daneshmand R and Tavassoly M K 2016 Eur. Phys. J. D 70 101
[3] Sehati N and Tavassoly M K 2017 Quantum Inf. Proc. 16 193
[4] Zhang S L, Jin C H, Shi J H, Guo J S, Zou X B and Guo G C 2017 Chin. Phys. Lett. 34 040302
[5] Tan Y G and Liu Q 2016 Chin. Phys. Lett. 33 090303
[6] Zhang S L, Jin C H, Guo J S, Shi J H, Zou X B and Guo G C 2016 Chin. Phys. Lett. 33 120302
[7] Ekert A K 1991 Phys. Rev. Lett. 67 661
[8] Mattle K, Weinfurter H, Kwiat P G and Zeilinger A 1996 Phys. Rev. Lett. 76 4656
[9] Pakniat R, Tavassoly M K and Zandi M H 2016 Chin. Phys. B 25 100303
[10] Ghasemi M and Tavassoly M K 2016 Eur. Phys. J. Plus 131 297
[11] Pakniat R, Tavassoly M K and Zandi M H 2017 Opt. Commun. 382 381
[12] Zurek W H 2003 Rev. Mod. Phys. 75 715
[13] Huang L Y and Fang M F 2010 Chin. Phys. B 19 090318
[14] Yang G, Lian B W and Nie M 2016 Chin. Phys. B 25 080310
[15] Liao X P, Fang M F, Fang J S and Zhu Q Q 2014 Chin. Phys. B 23 020304
[16] Facchi P, Lidar D and Pascazio S 2004 Phys. Rev. A 69 032314
[17] Maniscalco S, Francica F, Zaffino R L, Gullo N L and Plastina F 2008 Phys. Rev. Lett. 100 090503
[18] Nourmandipour A, Tavassoly M K and Rafiee M 2016 Phys. Rev. A 93 022327
[19] Kwiat P G, Berglund A J, Altepeter J B and White A G 2000 Science 290 498
[20] Lidar D A, Chuang I L and Whaley K B 1998 Phys. Rev. Lett. 81 2594
[21] Paternostro M, Tame M, Palma G and Kim M 2006 Phys. Rev. A 74 052317
[22] Dong R, Lassen M, Heersink J, Marquardt C, Filip R, Leuchs G and Andersen U L 2008 Nat. Phys. 4 919
[23] Zhang S L, Guo J S, Shi J H and Zou X B 2016 Chin. Phys. Lett. 33 070303
[24] Das S and Agarwal G 2010 Phys. Rev. A 81 052341
[25] Korotkov A N and Keane K 2010 Phys. Rev. A 81 040103
[26] Sun Q, Al-Amri M, Davidovich L and Zubairy M S 2010 Phys. Rev. A 82 052323
[27] Lee S Y and Nha H 2010 Phys. Rev. A 82 053812
[28] Yu T and Eberly J 2004 Phys. Rev. Lett. 93 140404
[29] Gardiner C W and Zoller P 1999 Quantum Noise (Berlin:Springer)
[30] Bellomo B, Lo Franco R and Compagno G 2007 Phys. Rev. Lett. 99 160502
[31] Bellomo B, Lo Franco R, Maniscalco S and Compagno G 2008 Phys. Rev. A 78 060302
[32] Bellomo B, Franco R L, Maniscalco S and Compagno G 2010 Phys. Scr. T140 014014
[33] Xiao X, Fang M F, Li Y L, Zeng K and Wu C 2009 J. Phys. B:At. Mol. Opt. Phys. 42 235502
[34] Tong Q J, An J H, Luo H G and Oh C H 2010 Phys. Rev. A 81 052330
[35] Yang W L, An J H, Zhang C, Feng M and Oh C H 2013 Phys. Rev. A 87 022312
[36] Chen C, Yang C J and An J H 2016 Phys. Rev. A 93 062122
[37] Solano E, Agarwal G S and Walther H 2003 Phys. Rev. Lett. 90 027903
[38] Breuer H P and Petruccione F 2002 The Theory of Open Quantum Systems (Oxford:Oxford University Press)
[39] Spohn H 1980 Rev. Mod. Phys. 52 569
[40] Dalton B J, Barnett S M and Garraway B M 2001 Phys. Rev. A 64 053813
[41] Maniscalco S and Petruccione F 2006 Phys. Rev. A 73 012111
[42] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[43] Liu Y X, Sun C P, Nori F and Franco 2006 Phys. Rev. A 74 052321
[44] Zhang J S and Xu J B 2009 Opt. Commun. 282 2543
[45] Zhang J S, Xu J B and Lin Q 2009 Eur. Phys. J. D 51 283
[1] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[2] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[3] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[4] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[5] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[6] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[7] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[8] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[9] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[10] Effects of colored noise on the dynamics of quantum entanglement of a one-parameter qubit—qutrit system
Odette Melachio Tiokang, Fridolin Nya Tchangnwa, Jaures Diffo Tchinda,Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2022, 31(5): 050306.
[11] Probabilistic resumable quantum teleportation in high dimensions
Xiang Chen(陈想), Jin-Hua Zhang(张晋华), and Fu-Lin Zhang(张福林). Chin. Phys. B, 2022, 31(3): 030302.
[12] Tetrapartite entanglement measures of generalized GHZ state in the noninertial frames
Qian Dong(董茜), R. Santana Carrillo, Guo-Hua Sun(孙国华), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(3): 030303.
[13] Entanglement spectrum of non-Abelian anyons
Ying-Hai Wu(吴英海). Chin. Phys. B, 2022, 31(3): 037302.
[14] Time evolution law of a two-mode squeezed light field passing through twin diffusion channels
Hai-Jun Yu(余海军) and Hong-Yi Fan(范洪义). Chin. Phys. B, 2022, 31(2): 020301.
[15] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
No Suggested Reading articles found!