|
|
Coherent-driving-assisted quantum speedup in Markovian channels |
Xiang Lu(鹿翔), Ying-Jie Zhang(张英杰)†, and Yun-Jie Xia(夏云杰) |
1 Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Department of Physics, Qufu Normal University, Qufu 273165, China |
|
|
Abstract As is well known, the quantum evolution speed of quantum state can never be accelerated in the Markovian regime without any operators on the system. The Hamiltonian corrections induced by the action of coherent driving forces are often used to fight dissipative and decoherence mechanisms in experiments. For this reason, considering three noisy channels (the phase-flip channel, the amplitude damping channel and the depolarizing channel), we propose a scheme of speedup evolution of an open system by controlling an external unitary coherent driving operator on the system. It is shown that, in the presence of the coherent driving, no-speedup evolution can be transformed into quantum speedup evolution in the Markovian dynamics process. Additionally, under the fixed coherent driving strength in the above three noisy channels, the best way to achieve the most degree of quantum speedup for the system has been acquired by rotating the system with appropriate driving direction angles, respectively. Finally, we conclude that the reason for this acceleration is not the non-Markovian dynamical behavior of the system but due to the oscillation of geometric distance between the initial state and the target final state.
|
Received: 22 July 2020
Revised: 08 September 2020
Accepted manuscript online: 15 October 2020
|
PACS:
|
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
03.65.Ta
|
(Foundations of quantum mechanics; measurement theory)
|
|
42.50.Lc
|
(Quantum fluctuations, quantum noise, and quantum jumps)
|
|
Fund: Project supported by the Shandong Provincial Natural Science Foundation, China (Grant No. ZR2020MA086) and the National Natural Science Foundation of China (Grant Nos. 61675115 and 11974209). |
Corresponding Authors:
†Corresponding author. E-mail: yingjiezhang@qfnu.edu.cn
|
Cite this article:
Xiang Lu(鹿翔), Ying-Jie Zhang(张英杰), and Yun-Jie Xia(夏云杰) Coherent-driving-assisted quantum speedup in Markovian channels 2021 Chin. Phys. B 30 020301
|
1 Mandelstam L and Tamm I1945 J. Phys. (USSR) 9 249 2 Fleming G N 1973 Nuovo Cimento A 16 232 3 Anandan J and Aharonov Y 1990 Phys. Rev. Lett. 65 1697 4 Vaidman L 1992 Am. J. Phys. 60 182 5 Levitin L B and Toffoli T 2009 Phys. Rev. Lett. 103 160502 6 Giovannetti V, Lloyd S and Maccone L 2003 Phys. Rev. A 67 052109 7 Jones P J and Kok P 2010 Phys. Rev. A 82 022107 8 Zwierz M 2012 Phys. Rev. A 86 016101 9 Deffner S and Lutz E 2013 J. Phys. A 46 335302 10 Pfeifer P 1993 Phys. Rev. Lett. 70 3365 11 Pfeifer P and Fröhlich J 1995 Rev. Mod. Phys. 67 759 12 Taddei M M, Escher B M, Davidovich L and de Matos Filho R L 2013 Phys. Rev. Lett. 110 050402 13 del Campo A, Egusquiza I L, Plenio M B and Huelga S F 2013 Phys. Rev. Lett. 110 050403 14 Deffner S and Lutz E 2013 Phys. Rev. Lett. 111 010402 15 Zhang Y J, Han W, Xia Y J, Cao J P and Fan H 2014 Sci. Rep. 4 4890 16 Xu K, Han W, Zhang Y J and Fan H 2018 Chin. Phys. B 27 010302 17 Han W, Jiang K X, Zhang Y J and Xia Y J 2015 Chin. Phys. B 24 120304 18 Xu Z Y, Luo S L, Yang W L, Liu C and Zhu S Q 2014 Phys. Rev. A 89 012307 19 Deffner S 2014 J. Phys. B 47 145502 20 Nielsen M A and Chuang I L2000 Quantum Computation and Quantum Information (New York: Cambridge University Press) 21 Bekenstein J D 1981 Phys. Rev. Lett. 46 623 22 Deffner S and Lutz E 2010 Phys. Rev. Lett. 105 170402 23 Giovannetti V, Lloyd S and Maccone L 2011 Nat. Photon. 5 222 24 Mukherjee V, Carlini A, Mari A, Caneva T, Montangero S, Calarco T, Fazio R and Giovannetti V 2013 Phys. Rev. A 88 062326 25 Hegerfeldt G C 2013 Phys. Rev. Lett. 111 260501 26 Hegerfeldt G C 2014 Phys. Rev. A 90 032110 27 Avinadav C, Fischer R, London P and Gershoni D 2014 Phys. Rev. B 89 245311 28 Campaioli F, Pollock F A, Binder F C and Modi K 2018 Phys. Rev. Lett. 120 060409 29 Campaioli F, Pollock F A and Modi K 2019 Quantum 3 168 30 Sun S N and Zheng Y J 2019 Phys. Rev. Lett. 123 180403 31 A quantum information science and technology roadmap, part 1: Quantum computation, Section 6.9, LA-UR-04-1778 (2004) 32 Hughes R, Doolen G, Awschalom D, Caves C, Chapman M, Clark R, Cory D, DiVincenzo D, Ekert A, Hammel P C, Kwiat P, Lloyd S, Milburn G, Orlando T, Steel D, Vazirani U, Whaley K B and Wineland D A Quantum Information Science and Technology Roadmap, Part 1: Quantum Computation (Technical report, Advanced Research and Development Activity (ARDA)) 33 Liu C, Xu Z Y and Zhu S Q 2015 Phys. Rev. A 91 022102 34 Wu S X, Zhang Y, Yu C S and Song H S 2015 J. Phys. A 48 045301 35 Bukov M, Sels D and Polkovnikov A 2019 Phys. Rev. X 9 011034 36 Zhang Y J, Han W, Xia Y J, Tian J X and Fan H 2016 Sci. Rep. 6 27349 37 Hamma A, Markopoulou F, Premont-Schwarz I and Severini S 2009 Phys. Rev. Lett. 102 017204 38 Wu S X and Yu C S 2018 Phys. Rev. A 98 042132 39 Zhang Y J, Han W, Xia Y J, Cao J P and Fan H 2015 Phys. Rev. A 91 032112 40 Zhang Y J, Han W, Xia Y J, Yu Y M and Fan H 2015 Sci. Rep. 5 13359 41 Cai X J and Zheng Y J 2017 Phys. Rev. A 95 052104 42 Shanahan B, Chenu A, Margolus N and del Campo A 2018 Phys. Rev. Lett. 120 070401 43 Okuyama M and Ohzeki M 2018 Phys. Rev. Lett. 120 070402 44 Liu H B, Yang W L, An J H and Xu Z Y 2016 Phys. Rev. A 93 020105 45 Zhang Y J, Xia Y J and Fan H 2016 Europhys. Lett. 116 30001 46 Xu K, Zhang Y J, Xia Y J, Wang Z D and Fan H 2018 Phys. Rev. A 98 022114 47 Cimmarusti A D, Yan Z, Patterson B D, Corcos L P, Orozco L A and Deffner S 2015 Phys. Rev. Lett. 114 233602 48 Felicetti S, Fedortchenko S, Rossi J R, Ducci S, Favero I, Coudreau T and Milman P 2017 Phys. Rev. A 95 022322 49 Gatto D, De Pasquale A and Giovannetti V 2019 Phys. Rev. A 99 032307 50 Qian Y and Xu J B 2012 Chin. Phys. B 21 030305 51 Rong X, Geng J P, Shi F Z, Liu Y, Xu K B, Ma W C, Kong F, Jiang Z, Wu Y and Du J F 2015 Nature Commun. 6 8748 52 Huang Y Y, Wu Y K, Wang F, Hou P Y, Wang W B, Zhang W G, Lian W Q, Liu Y Q. Wang H Y, Zhang H Y, He L, Chang X Y, Xu Y and Duan L M 2019 Phys. Rev. Lett. 122 010503 53 Barends R et al. 2014 Nature 508 500 54 Barends R et al. 2016 Nature 534 222 55 Rivas A, Huelga S F and Plenio M B 2014 Rep. Prog. Phys. 77 094001 56 Breuer H P, Laine E M, Piilo J and Vacchini B 2016 Rev. Mod. Phys. 88 021002 57 Breuer H P, Laine E M and Piilo J 2009 Phys. Rev. Lett. 103 210401 58 Gorini V and Kossakowski A 1976 J. Math. Phys. 17 1298 59 Lindblad G 1976 Commun. Math. Phys. 48 119 60 Varcoe B T H, Brattke S, Weidinger M and Walther H 2000 Nature 403 743 61 Jonathan D and Plenio M B 2001 Phys. Rev. Lett. 87 127901 62 You J Q and Nori F 2011 Nature 474 589 63 Prawer S and Greentree A D 2008 Science 320 1601 64 Dai K Z et al. 2017 Appl. Phys. Lett. 111 242601 65 Magazzu1 L et al. 2018 Nat. Commun. 9 1403 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|