Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(11): 110303    DOI: 10.1088/1674-1056/26/11/110303
GENERAL Prev   Next  

Quantum coherence preservation of atom with a classical driving field under non-Markovian environment

De-Ying Gao(高德营)1,2, Qiang Gao(高强)1, Yun-Jie Xia(夏云杰)1
1. Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Department of Physics, Qufu Normal University, Qufu 273165, China;
2. College of Dong Chang, Liaocheng University, Liaocheng, Shandong 252000, China
Abstract  The exact dynamics of an open quantum system consisting of one qubit driven by a classical driving field is investigated. Our attention is focused on the influences of single-and two-photon excitations on the dynamics of quantum coherence and quantum entanglement. It is shown that the atomic coherence can be improved or even maintained by the classical driving field, the non-Markovian effect, and the atom-reservoir detuning. The interconversion between the atomic coherence and the atom-reservoir entanglement exists and can be controlled by the appropriate conditions. The conservation of coherence for different partitions is explored, and the dynamics of a system with two-photon excitations is different from the case of single-photon excitation.
Keywords:  quantum coherence      non-Markovian process      classical driving field  
Received:  05 May 2017      Revised:  25 July 2017      Accepted manuscript online: 
PACS:  03.67.-a (Quantum information)  
  03.65.-w (Quantum mechanics)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61675115, 11204156, 11574178, 11304179, and 11647172) and the Science and Technology Plan Projects of Shandong University, China (Grant No. J16LJ52).
Corresponding Authors:  Yun-Jie Xia     E-mail:  yjxia@mail.qfnu.edu.cn

Cite this article: 

De-Ying Gao(高德营), Qiang Gao(高强), Yun-Jie Xia(夏云杰) Quantum coherence preservation of atom with a classical driving field under non-Markovian environment 2017 Chin. Phys. B 26 110303

[1] Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[2] Zukowshi M, Zeilinger A, Horne M A and Ekert A K 1993 Phys. Rev. Lett. 71 4287
[3] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
[4] Ekert A K 1991 Phys. Rev. Lett. 67 661
[5] Barenco A, Deutsch D, Ekert A and Jozsa R 1995 Phys. Rev. Lett. 74 4083
[6] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantun Information(Cambridge:Cambridge University press)
[7] Karpat G,Čakmak B and Fanchini F F 2014 Phys. Rev. B 90 104431
[8] Čkmak B, Karpat G and Fanchini F F 2015 Entropy 17 790
[9] Hillery M 2016 Phys. Rev. A 93 012111
[10] Kai v P, Rudnicki L and Mintert F 2015 Phys. Rev. A 92 052114
[11] Bera M N, Qureshi T, Siddiqui M A and Pati A K 2015 Phys. Rev. A 92 012118
[12] Ford L H 1978 Proc. R. Soc. A 364 227
[13] Correa L A, Palao J P, Alonso D and Adesso G 2014 Sci. Rep. 4 3949
[14] Ro ß nagel J, Abah O, Schmidtkaler F, Singer K and Lutz E 2014 Phys. Rev. Lett. 112 030602
[15] Narasimhachar V and Gour G 2015 Nat. Commun. 6 7689
[16] Lostaglio L, Jennings D and Rudolph T 2015 Nat. Commun. 6 6383
[17] Baumgratz T, Cramer M and Plenio M B 2014 Phys. Rev. Lett. 113 140401
[18] Girolami D 2014 Phys. Rev. Lett. 113 170401
[19] Bromley T R, Cianciaruso M and Adesso G 2015 Phys. Rev. Lett. 114 210401
[20] Yang L W and Xia Y J 2016 Chin. Phys. B 25 110303
[21] Carole A C, Brebner G, Haikka P and Maniscalco S 2014 Phys. Rev. A 89 024101
[22] Zhang Y J, Han W, Xia Y J, Yu Y M and Fan H 2015 Sci. Rep. 5 13359
[23] Kim M S, Son W, Bužek V and Knight P L 2002 Phys. Rev. A 65 032323
[24] Wang X B 2002 Phys. Rev. A 66 024303
[25] Asbóth J K, Calsamiglia J and Ritsch H 2005 Phys. Rev. Lett. 94 173602
[26] Streltsov L, Singh U, Dhar H S, Bera M N and Adesso G 2015 Phys. Rev. Lett. 115 020403
[27] Yao Y, Xiao X, Ge L and Sun C P 2015 Phys. Rev. A 92 022112
[28] Zou H M and Fang M F 2016 Chin. Phys. B 25 090302
[29] Ge G Q, Luo X L, Wu Y and Li Z G 1996 Phys. Rev. A 54 1604
[30] Liu Y X, Sun C P and Nori F 2006 Phys. Rev. A 74 052321
[31] Breuer H P and Petruccione F 2002 The Theory of Open Quantum Systems(Oxford:Oxford University Press) p. 472
[32] Dalton B J, Barnett S M and Garrraway B M 2001 Phys. Rev. A 64 053813
[33] Berry D W and Sanders B C 2003 J. Phys. A General 36 12255
[34] Garraway B M 1997 Phys. Rev. A 55 2290
[35] Zhang Y J, Zou X B, Xia Y J and Guo G C 2010 Phys. Rev. A 82 022108
[36] Myatt C J, King B E, Turchette Q A, Sackett C A, Kielpinski D, Itano W M, Monroe C and Wineland D J 2000 Nature 403 269
[37] Diehl S, Micheli A, Kantian A, Kraus B, Büchler H P and Zoller P 2008 Nat. Phys. 4 878
[1] Quantum dynamical resource theory under resource non-increasing framework
Si-Ren Yang(杨思忍) and Chang-Shui Yu(于长水). Chin. Phys. B, 2023, 32(4): 040305.
[2] Enhancement of charging performance of quantum battery via quantum coherence of bath
Wen-Li Yu(于文莉), Yun Zhang(张允), Hai Li(李海), Guang-Fen Wei(魏广芬), Li-Ping Han(韩丽萍), Feng Tian(田峰), and Jian Zou(邹建). Chin. Phys. B, 2023, 32(1): 010302.
[3] Theoretical study on the exciton dynamics of coherent excitation energy transfer in the phycoerythrin 545 light-harvesting complex
Xue-Yan Cui(崔雪燕), Yi-Jing Yan(严以京), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(1): 018201.
[4] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[5] Steered coherence and entanglement in the Heisenberg XX chain under twisted boundary conditions
Yu-Hang Sun(孙宇航) and Yu-Xia Xie(谢玉霞). Chin. Phys. B, 2021, 30(7): 070303.
[6] Nonlocal advantage of quantum coherence in a dephasing channel with memory
Ming-Liang Hu(胡明亮), Yu-Han Zhang(张宇晗), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(3): 030308.
[7] Quantifying coherence with dynamical discord
Lian-Wu Yang(杨连武) and Yun-Jie Xia(夏云杰). Chin. Phys. B, 2021, 30(12): 120304.
[8] Quantum coherence and correlation dynamics of two-qubit system in spin bath environment
Hao Yang(杨豪), Li-Guo Qin(秦立国), Li-Jun Tian(田立君), Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2020, 29(4): 040303.
[9] Generation of atomic spin squeezing via quantum coherence: Heisenberg-Langevin approach
Xuping Shao(邵旭萍). Chin. Phys. B, 2020, 29(12): 124206.
[10] Coherence measures based on sandwiched Rényi relative entropy
Jianwei Xu(胥建卫). Chin. Phys. B, 2020, 29(1): 010301.
[11] Quantum uncertainty relations of quantum coherence and dynamics under amplitude damping channel
Fugang Zhang(张福刚), Yongming Li(李永明). Chin. Phys. B, 2018, 27(9): 090301.
[12] Decoherence for a two-qubit system in a spin-chain environment
Yang Yang(杨阳), An-Min Wang(王安民), Lian-Zhen Cao(曹连振), Jia-Qiang Zhao(赵加强), Huai-Xin Lu(逯怀新). Chin. Phys. B, 2018, 27(9): 090302.
[13] Robustness of coherence between two quantum dots mediated by Majorana fermions
Liang Chen(陈亮), Ye-Qi Zhang(张业奇), Rong-Sheng Han(韩榕生). Chin. Phys. B, 2018, 27(7): 077102.
[14] Classical-driving-assisted coherence dynamics and its conservation
De-Ying Gao(高德营), Qiang Gao(高强), Yun-Jie Xia(夏云杰). Chin. Phys. B, 2018, 27(6): 060304.
[15] The heat and work of quantum thermodynamic processes with quantum coherence
Shanhe Su(苏山河), Jinfu Chen(陈劲夫), Yuhan Ma(马宇翰), Jincan Chen(陈金灿), Changpu Sun(孙昌璞). Chin. Phys. B, 2018, 27(6): 060502.
No Suggested Reading articles found!