Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(1): 014204    DOI: 10.1088/1674-1056/21/1/014204
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Role of phase fluctuation and dephasing in the enhancing continuous variable entanglement of a two-photon coherent beat laser

Sintayehu Tesfa
Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, 01187 Dresden, Germany; Physics Department, Dilla University, P. O. Box 419, Dilla, Ethiopia
Abstract  A steady state analysis of the nonclassical features and statistical properties of the cavity radiation of a two-photon coherent beat laser is presented. Results show that the degree of two-mode squeezing, detectable entanglement and intensity of the cavity radiation can increase with the deviation of the phase fluctuations of the laser employed in preparing the atoms, but decrease with the increasing rate at which the induced coherence superposition decays. Although it is found that varying the phase fluctuations and dephasing can lead to modification in the quantum features and statistical properties of the radiation, it does not alter the similarity in the nature of the degree of entanglement detectable by the criteria following from Duan-Giedke-Cirac-Zoller and logarithmic negativity in a perceivable manner. Since the intensity and quantum features can be readily enhanced, this system is expected to be a viable source of a strong robust entangled (squeezed) light under various conditions. Moreover, comparison of the mean number of photon pairs with intensity difference shows that the chance of inciting a two-photon process can be enhanced by changing the rate of dephasing and phase fluctuations.
Keywords:  coherent beat laser      phase fluctuations      dephasing      entanglement  
Received:  23 April 2011      Revised:  29 August 2011      Accepted manuscript online: 
PACS:  42.50.Ar  
  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  42.50.Lc (Quantum fluctuations, quantum noise, and quantum jumps)  
  03.65.Ud (Entanglement and quantum nonlocality)  

Cite this article: 

Sintayehu Tesfa Role of phase fluctuation and dephasing in the enhancing continuous variable entanglement of a two-photon coherent beat laser 2012 Chin. Phys. B 21 014204

[1] Tesfa S 2008 itJ. Phys. B: At. Mol. Opt. Phys. 41 145501
[2] Ansari N A, Banacloche J G and Zubairy M S 1990 itPhys. Rev. A 41 5179
[3] Ansari N A 1992 itPhys. Rev. A 46 1560
[4] Tan H T, Zhu S Y and Zubairy M S 2005 Phys. Rev. A 72 022305
[5] Xiong H, Scully M O and Zubairy M S 2005 Phys. Rev. Lett. 94 023601
[6] Kiffner M, Zubairy M S, Evers J and Keitel C H 2007 Phys. Rev. A 75 033816
[7] Tesfa 2006 Phys. Rev. A 74 043816
[8] Scully M O, Wodkiewicz K, Zubairy M S, ergou J, Lu N and Meyer ter Van J 1988 Phys. Rev. lett. 60 1832
[9] Anwar J and Zubairy M S 1994 Phys. Rev. A 49 481
[10] An S and Sargent III M 1989 Phys. Rev. A 39 1841
[11] Ansari N A 1993 Phys. Rev. A 48 4686
[12] Tesfa S 2010 Phys. Rev. A 82 053835
[13] Tesfa S 2011 Phys. Rev. A 83 023809
[14] Tesfa S 2011 itarXiv: 1101.3234v1 [quant-ph]
[15] Qamar S, Al-Amri M and Zubairy M S 2009 Phys. Rev. A 79 013831
[16] Qamar S, Qamar S and Zubairy M S 2010 Opt. Commun. 283 781
[17] Majeed M and Zubairy M S 1991 Phys. Rev. A 44 4688
[18] Qamar S, Ghafoor F, Hillery M and Zubairy M S 2008 Phys. Rev. A 77 062308
[19] Qamar S, Xiong H and Zubairy M S 2007 itPhys. Rev. A 75 062305
[20] Tesfa S 2009 itPhys. Rev. A 79 033810
[21] Tesfa S 2009 itPhys. Rev. A 79 063815
[22] Tesfa S 2009 itJ. Phys. B: At. Mol. Opt. Phys. 42 215506
[23] Barnett S M and Badmore P M 1997 itMethods in Theoretical Quantum Optics (Oxford University Press, New York)
[24] Malcuit M S, Gauthier D J and Boyd R W 1985 itPhys. Rev. Lett. 55 1086
[25] Steiner I and Toschek P E 1995 itPhys. Rev. Lett. 74 4639
[26] Winters M P, Hall J L and Toschek P E 1990 itPhys. Rev. Lett. 65 3116
[27] Kolchin P, Du S, Belthangady C, Yin G Y and Harris S E 2006 itPhys. Rev. Lett. 97 113602
[28] McCormick C F, Marino A M, Boyer V and Lett P D 2008 itPhys. Rev. A 78 043816
[29] Wu H and Xiao M 2009 itPhys. Rev. A 80 063415
[30] Shi W X, Hu X M and Wang F 2009 itJ. Phys. B: At. Mol. Opt. Phys. 42 165506
[31] Tesfa S 2008 itJ. Phys. B: At. Mol. Opt. Phys. 41 055503
[32] Einstein A, Podolsky B and Rosen N 1935 itPhys. Rev. 47 777
[33] Tesfa S 2008 itPhys. Rev. A 77 013815
[34] Duan L M, Giedke G, Cirac J I and Zoller P 2000 itPhys. Rev. Lett. 84 2722
[35] Horodecki M, Horodcki P and Horodecki R 1996 itPhys. Lett. A 223 1
[36] Simon R 2000 itPhys. Rev. Lett. 84 2726
[37] Giovannetti V, Mancini S, Vitali D and Tombesi P 2003 itPhys. Rev. A 67 022320
[38] Shchukin E and Vogel W 2005 itPhys. Rev. Lett. 95 230502
[39] Serafini A 2006 itPhys. Rev. Lett. 96 110402
[40] Hillery M and Zubairy M S 2006 itPhys. Rev. Lett. 96 050503
[41] Nha H and Zubairy M S 2008 itPhys. Rev. Lett. 101 130402
[42] Vidal G and Wener R F 2002 itPhys. Rev. A 65 032314
[43] Laurat J, Keller G, Oliviera-Huguenim Augusto J, Fabre C, Coudreau T, Serafini A, Adesso G and Illuminati F 2005 itJ. Opt. B: Quantum Semiclass. Opt. 7 577
[44] Adesso G, Serafini A and Illuminati F 2004 itPhys. Rev. A 70 022318
[45] Fiurasek J and Cerf N J 2004 itPhys. Rev. Lett. 93 063601
[46] Ma Y H, Mu Q X, Yang G H and Zhou L 2008 itJ. Phys. B: At. Mol. Opt. Phys. 41 215502
[47] Fujikawa K 2009 itPhys. Rev. A 79 032334
[48] Mandel L 1979 itOpt. Lett. 4 205
[49] Mandel L and Wolf E 1995 itOptical Coherence and Quantum Optics (New York: Cambridge University Press)
[50] Agrwal G S and Tara K 1992 itPhys. Rev. A 46 485
[1] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[2] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[3] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[4] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[5] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[6] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[7] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[8] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[9] Quantum speed limit of the double quantum dot in pure dephasing environment under measurement
Zhenyu Lin(林振宇), Tian Liu(刘天), Zongliang Li(李宗良), Yanhui Zhang(张延惠), and Kang Lan(蓝康). Chin. Phys. B, 2022, 31(7): 070307.
[10] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[11] Effects of colored noise on the dynamics of quantum entanglement of a one-parameter qubit—qutrit system
Odette Melachio Tiokang, Fridolin Nya Tchangnwa, Jaures Diffo Tchinda,Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2022, 31(5): 050306.
[12] Probabilistic resumable quantum teleportation in high dimensions
Xiang Chen(陈想), Jin-Hua Zhang(张晋华), and Fu-Lin Zhang(张福林). Chin. Phys. B, 2022, 31(3): 030302.
[13] Tetrapartite entanglement measures of generalized GHZ state in the noninertial frames
Qian Dong(董茜), R. Santana Carrillo, Guo-Hua Sun(孙国华), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(3): 030303.
[14] Entanglement spectrum of non-Abelian anyons
Ying-Hai Wu(吴英海). Chin. Phys. B, 2022, 31(3): 037302.
[15] Time evolution law of a two-mode squeezed light field passing through twin diffusion channels
Hai-Jun Yu(余海军) and Hong-Yi Fan(范洪义). Chin. Phys. B, 2022, 31(2): 020301.
No Suggested Reading articles found!