|
|
Generating Kerr nonlinearity with an engineered non-Markovian environment |
Fei-Lei Xiong(熊飞雷)1, Wan-Li Yang(杨万里)1, Mang Feng(冯芒)1,2,3 |
1 State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China; 2 Department of Physics, Zhejiang Normal University, Jinhua 321004, China; 3 School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001, China |
|
|
Abstract Kerr nonlinearity is an important resource for creating squeezing and entanglement in quantum technology. Here we propose a scheme for generating Kerr nonlinearity originated from an engineered non-Markovian environment, which is different from the previous efforts using nonlinear media or quantum systems with special energy structures. In the present work, the generation of Kerr nonlinearity depends on the system-environment interaction time, the energy spectrum of the environment, and the system-environment coupling strength, regardless of the environmental initial state. The scheme can be realized in systems originally containing no Kerr interaction, such as superconducting circuit systems, optomechanical systems, and cavity arrays connected by transmission lines.
|
Received: 02 December 2019
Revised: 26 January 2020
Accepted manuscript online:
|
PACS:
|
03.67.-a
|
(Quantum information)
|
|
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
42.50.Dv
|
(Quantum state engineering and measurements)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0304503) and the National Natural Science Foundation of China (Grant Nos. 11835011, 11574353, 11734018, and 11674360). |
Corresponding Authors:
Mang Feng
E-mail: mangfeng@wipm.ac.cn
|
Cite this article:
Fei-Lei Xiong(熊飞雷), Wan-Li Yang(杨万里), Mang Feng(冯芒) Generating Kerr nonlinearity with an engineered non-Markovian environment 2020 Chin. Phys. B 29 040302
|
[1] |
Weinberger P 2008 Philos. Mag. Lett. 88 897
|
[2] |
Eisenberg H S, Silberberg Y, Morandotti R, Boyd A R and Aitchison J S 1998 Phys. Rev. Lett. 81 3383
|
[3] |
Yang W X, Zha T T and Lee R K 2009 Phys. Lett. A 374 355
|
[4] |
Kelley P L 1965 Phys. Rev. Lett. 15 1005
|
[5] |
Yoshiki W and Tanabe T 2014 Opt. Express 22 24332
|
[6] |
Brasch V, Geiselmann M, Herr T, Lihachev G, Pfeiffer M H P, Gorodetsky M L and Kippenberg T J 2016 Science 351 357
|
[7] |
Kippenberg T J, Holzwarth R and Diddams S A 2011 Science 332 555
|
[8] |
Braunstein S L and Loock P 2005 Rev. Mod. Phys. 77 513
|
[9] |
Nemoto K and Munro W J 2004 Phys. Rev. Lett. 93 250502
|
[10] |
Lin Q and Li J 2009 Phys. Rev. A 79 022301
|
[11] |
Rosenblum S, Gao Y Y, Reinhold P, Wang C, Axline C J, Frunzio L, Girvin S M, Jiang L, Mirrahimi M, Devoret M H and Schoelkopf R J 2018 Nat. Commun. 9 652
|
[12] |
Jeong H, Kim M S, Ralph T C and Ham B S 2004 Phys. Rev. A 70 061801
|
[13] |
Walls D F and Milburn G J 2007 Quantum Optics (Springer Science & Business Media)
|
[14] |
Wang C Q, Zou J and Zhang Z M 2016 Chin. Phys. Lett. 33 024202
|
[15] |
Zhao L F, Lai B H, Mei F, Yu Y F, Feng X L and Zhang Z M 2016 Chin. Phys. B 19 094207
|
[16] |
Milburn G J and Walls D F 1984 Phys. Rev. A 30 56
|
[17] |
Imoto N, Haus H A and Yamamoto Y 1985 Phys. Rev. A 32 2287
|
[18] |
Boyd R W 2003 Nonlinear Optics (Elsevier)
|
[19] |
Munro W J, Nemoto K, Beausoleil R G and Spiller T P 2005 Phys. Rev. A 71 033819
|
[20] |
Barrett S D, Kok P, Nemoto K, Beausoleil R G, Munro W J and Spiller T P 2005 Phys. Rev. A 71 060302
|
[21] |
Bose S, Jacobs K and Knight P L 1997 Phys. Rev. A 56 4175
|
[22] |
Aldana S, Bruder C and Nunnenkamp A 2013 Phys. Rev. A 88 043826
|
[23] |
Schmidt H and Imamoglu A 1996 Opt. Lett. 21 1936
|
[24] |
Liang H, Niu Y, Deng L and Gong S 2017 Phys. Lett. A 381 3978
|
[25] |
Hu Y, Ge G Q, Chen S, Yang X F and Chen Y L 2011 Phys. Rev. A 84 012329
|
[26] |
Wu Q Q, Liao J Q and Kuang L M 2011 Chin. Phys. B 20 034203
|
[27] |
Yan L, Su S, Hou Q Z, Yang W L and Feng M 2019 Opt. Express 27 377
|
[28] |
Breuer H P and Petruccione F 2007 The Theory of Open Quantum Systems (Oxford: Oxford University Press)
|
[29] |
Li L, Hall M J W and Wiseman H M 2018 Phys. Rep. 759 1
|
[30] |
Breuer H P, Laine E M, Piilo J and Vacchini B 2016 Rev. Mod. Phys. 88 021002
|
[31] |
Rivas Á, Huelga S F and Plenio M B 2014 Rep. Prog. Phys. 77 094001
|
[32] |
Wang Y D and Clerk A A 2013 Phys. Rev. Lett. 110 253601
|
[33] |
Woolley M J and Clerk A A 2014 Phys. Rev. A 89 063805
|
[34] |
Yan X B 2017 Phys. Rev. A 96 053831
|
[35] |
Didier N, Guillaud J, Shankar S and Mirrahimi M 2018 Phys. Rev. A 98 012329
|
[36] |
Pastawski F, Clemente L and Cirac J I 2011 Phys. Rev. A 83 012304
|
[37] |
Müller M, Diehl S, Pupillo G and Zoller P 2012 Advances in atomic, molecular, and optical physics, Vol. 61 (Elsevier)
|
[38] |
Streltsov A, Adesso G and Plenio M B 2017 Rev. Mod. Phys. 89 041003
|
[39] |
Yang W L, J H An, C Zhang, Feng M and Oh C H 2013 Phys. Rev. A 87 022312
|
[40] |
Bastidas V M, Kyaw T H, Tangpanitanon J, Romero G, Kwek L C and Angelakis D G 2018 New J. Phys. 20 093004
|
[41] |
Xiong F L, Li L and Chen Z B 2019 Phys. Lett. A 383 127
|
[42] |
Breuer H P, Laine E M and Piilo J 2009 Phys. Rev. Lett. 103 210401
|
[43] |
Kenfack A and Życzkowski K 2004 J. Opt. B: Quantum Semiclassical Opt. 6 396
|
[44] |
Nielsen M A and Chuang I L 2010 Quantum Computation and Quantum Information (Cambridge University Press)
|
[45] |
Glauber R J 1963 Phys. Rev. 131 2766
|
[46] |
Sudarshan E C G 1963 Phys. Rev. Lett. 10 277
|
[47] |
Houck A A, Türeci H E and Koch J 2012 Nat. Phys. 8 292
|
[48] |
Lucero E, Barends R, Chen Y, Kelly J, Mariantoni M, Megrant A, O'Malley P, Sank D, Vainsencher A, Wenner J, White T, Yin Y, Cleland A N and Martinis J M 2012 Nat. Phys. 8 719
|
[49] |
Aspelmeyer M, Kippenberg T J and Marquardt F 2014 Rev. Mod. Phys. 86 1391
|
[50] |
Underwood D L, Shanks W E, Koch J and Houck A A 2012 Phys. Rev. A 86 023837
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|