|
|
Quantifying quantum non-Markovianity via max-relative entropy |
Yu Luo(罗宇), Yongming Li(李永明) |
College of Computer Science, Shaanxi Normal University, Xi'an 710062, China |
|
|
Abstract We investigate the non-Markovian behavior in open quantum systems from an information-theoretic perspective. Our main tool is the max-relative entropy, which quantifies the maximum probability with which a state ρ can appear in a convex decomposition of a state σ. This operational interpretation provides a new view for the non-Markovian process. We also find that max-relative entropy can be the witness and measure of non-Markovian processes. As applications, some examples are also given and compared with other measures in this paper.
|
Received: 27 November 2018
Revised: 21 January 2019
Accepted manuscript online:
|
PACS:
|
03.67.-a
|
(Quantum information)
|
|
03.67.Mn
|
(Entanglement measures, witnesses, and other characterizations)
|
|
03.67.Bg
|
(Entanglement production and manipulation)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11671244) and the Research Funds for the Central Universities (Grant Nos. 2016TS060 and 2016CBY003). |
Corresponding Authors:
Yongming Li
E-mail: liyongm@snnu.edu.cn
|
Cite this article:
Yu Luo(罗宇), Yongming Li(李永明) Quantifying quantum non-Markovianity via max-relative entropy 2019 Chin. Phys. B 28 040301
|
[1] |
Breuer H P, Laine E M, Piilo J and Vacchini B 2016 Rev. Mod. Phys. 88 021002
|
[2] |
Breuer H P, Laine E M and Piilo J 2009 Phys. Rev. Lett. 103 210401
|
[3] |
Rivas A, Huelga S F and Plenio M B 2014 Rep. Prog. Phys. 77 094001
|
[4] |
de Vega I and Alonso D 2017 Rev. Mod. Phys. 89 015001
|
[5] |
Xu K, Han W, Zhang Y J and Fan H 2018 Chin. Phys. B 27 010302
|
[6] |
Ashrafi S M and Bazrafkan M R 2014 Chin. Phys. B 23 090303
|
[7] |
He Z, Li L, Yao C and Li Y 2015 Acta Phys. Sin. 64 140302 (in Chinese)
|
[8] |
Huang J, Fang M F and Liu X 2012 Chin. Phys. B 21 014205
|
[9] |
Wu W, Liu X and Wang C 2018 Chin. Phys. B 27 060302
|
[10] |
Teslenkoa V I, Kapitanchuka O L and Zhao Y 2015 Chin. Phys. B 24 028702
|
[11] |
Chruscinski D and Wudarski F 2013 Phys. Lett. A 377 1425
|
[12] |
Lindblad G 1976 Commun. Math. Phys. 48 119
|
[13] |
Breuer H P, Petruccione F, et al. 2002 The theory of open quantum systems (Demand: Oxford University Press)
|
[14] |
Wolf M M, Eisert J, Cubitt T S and Cirac J I 2008 Phys. Rev. Lett. 101 150402
|
[15] |
Haikka P, Cresser J D and Maniscalco S 2011 Phys. Rev. A 83 012112
|
[16] |
Chruscinski D and Maniscalco S 2014 Phys. Rev. Lett. 112 120402
|
[17] |
Chen S L, Lambert N, Li C M, Miranowicz A, Chen Y N and Nori F 2016 Phys. Rev. Lett. 116 020503
|
[18] |
Rivas A, Huelga S F and Plenio M B 2010 Phys. Rev. Lett. 105 050403
|
[19] |
Luo S, Fu S and Song H 2012 Phys. Rev. A 86 044101
|
[20] |
Lu X M, Wang X and Sun C P 2010 Phys. Rev. A 82 042103
|
[21] |
He Z, Yao C, Wang Q and Zou J 2014 Phys. Rev. A 90 042101
|
[22] |
Datta N 2009 IEEE Trans. Inform. Theroy 55 2816
|
[23] |
Datta N 2009 Int. J. Quantum Inform. 07 475
|
[24] |
Brandao F G S L and Datta N 2011 IEEE Trans. Inform. Theroy 57 1754
|
[25] |
Buscemi F and Datta N 2010 IEEE Trans. Inform. Theroy 56 1447
|
[26] |
Renner R and Schaffner C 2009 IEEE Trans. Inform. Theroy 55 4337
|
[27] |
Tomamichel M and Renner R 2011 Phys. Rev. Lett. 106 110506
|
[28] |
Renner R and Wolf S 2004 Proceedings of the International Symposium on Information Theory (Chicago: IEEE)
|
[29] |
Renes J M and Renner R 2012 IEEE Trans. Inform. Theroy 58 1985
|
[30] |
Horodecki M, Oppenheim J and Winter A 2007 Commun. Math. Phys. 269 107
|
[31] |
Buhrman H, Christandl M, Hayden P, Lo H K and Wehner S 2006 Phys. Rev. Lett. 97 250501
|
[32] |
Bu K, Singh U, Fei S M, Pati A K and Wu J 2017 Phys. Rev. Lett. 119 150405
|
[33] |
Datta N Generalized relative entropies, entanglement monotones and one-shot information theory URL: http://pirsa.org/13060003/PACS codes
|
[34] |
Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
|
[35] |
Song H, Luo S and Hong Y 2015 Phys. Rev. A 91 042110
|
[36] |
Budini A A 2018 Phys. Rev. A 97 052113
|
[37] |
Laine E M, Piilo J and Breuer H P 2010 Phys. Rev. A 81 062115
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|