Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(4): 040301    DOI: 10.1088/1674-1056/28/4/040301
GENERAL Prev   Next  

Quantifying quantum non-Markovianity via max-relative entropy

Yu Luo(罗宇), Yongming Li(李永明)
College of Computer Science, Shaanxi Normal University, Xi'an 710062, China
Abstract  

We investigate the non-Markovian behavior in open quantum systems from an information-theoretic perspective. Our main tool is the max-relative entropy, which quantifies the maximum probability with which a state ρ can appear in a convex decomposition of a state σ. This operational interpretation provides a new view for the non-Markovian process. We also find that max-relative entropy can be the witness and measure of non-Markovian processes. As applications, some examples are also given and compared with other measures in this paper.

Keywords:  non-Markovian      max-relative entropy      open systems  
Received:  27 November 2018      Revised:  21 January 2019      Accepted manuscript online: 
PACS:  03.67.-a (Quantum information)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  03.67.Bg (Entanglement production and manipulation)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11671244) and the Research Funds for the Central Universities (Grant Nos. 2016TS060 and 2016CBY003).

Corresponding Authors:  Yongming Li     E-mail:  liyongm@snnu.edu.cn

Cite this article: 

Yu Luo(罗宇), Yongming Li(李永明) Quantifying quantum non-Markovianity via max-relative entropy 2019 Chin. Phys. B 28 040301

[1] Breuer H P, Laine E M, Piilo J and Vacchini B 2016 Rev. Mod. Phys. 88 021002
[2] Breuer H P, Laine E M and Piilo J 2009 Phys. Rev. Lett. 103 210401
[3] Rivas A, Huelga S F and Plenio M B 2014 Rep. Prog. Phys. 77 094001
[4] de Vega I and Alonso D 2017 Rev. Mod. Phys. 89 015001
[5] Xu K, Han W, Zhang Y J and Fan H 2018 Chin. Phys. B 27 010302
[6] Ashrafi S M and Bazrafkan M R 2014 Chin. Phys. B 23 090303
[7] He Z, Li L, Yao C and Li Y 2015 Acta Phys. Sin. 64 140302 (in Chinese)
[8] Huang J, Fang M F and Liu X 2012 Chin. Phys. B 21 014205
[9] Wu W, Liu X and Wang C 2018 Chin. Phys. B 27 060302
[10] Teslenkoa V I, Kapitanchuka O L and Zhao Y 2015 Chin. Phys. B 24 028702
[11] Chruscinski D and Wudarski F 2013 Phys. Lett. A 377 1425
[12] Lindblad G 1976 Commun. Math. Phys. 48 119
[13] Breuer H P, Petruccione F, et al. 2002 The theory of open quantum systems (Demand: Oxford University Press)
[14] Wolf M M, Eisert J, Cubitt T S and Cirac J I 2008 Phys. Rev. Lett. 101 150402
[15] Haikka P, Cresser J D and Maniscalco S 2011 Phys. Rev. A 83 012112
[16] Chruscinski D and Maniscalco S 2014 Phys. Rev. Lett. 112 120402
[17] Chen S L, Lambert N, Li C M, Miranowicz A, Chen Y N and Nori F 2016 Phys. Rev. Lett. 116 020503
[18] Rivas A, Huelga S F and Plenio M B 2010 Phys. Rev. Lett. 105 050403
[19] Luo S, Fu S and Song H 2012 Phys. Rev. A 86 044101
[20] Lu X M, Wang X and Sun C P 2010 Phys. Rev. A 82 042103
[21] He Z, Yao C, Wang Q and Zou J 2014 Phys. Rev. A 90 042101
[22] Datta N 2009 IEEE Trans. Inform. Theroy 55 2816
[23] Datta N 2009 Int. J. Quantum Inform. 07 475
[24] Brandao F G S L and Datta N 2011 IEEE Trans. Inform. Theroy 57 1754
[25] Buscemi F and Datta N 2010 IEEE Trans. Inform. Theroy 56 1447
[26] Renner R and Schaffner C 2009 IEEE Trans. Inform. Theroy 55 4337
[27] Tomamichel M and Renner R 2011 Phys. Rev. Lett. 106 110506
[28] Renner R and Wolf S 2004 Proceedings of the International Symposium on Information Theory (Chicago: IEEE)
[29] Renes J M and Renner R 2012 IEEE Trans. Inform. Theroy 58 1985
[30] Horodecki M, Oppenheim J and Winter A 2007 Commun. Math. Phys. 269 107
[31] Buhrman H, Christandl M, Hayden P, Lo H K and Wehner S 2006 Phys. Rev. Lett. 97 250501
[32] Bu K, Singh U, Fei S M, Pati A K and Wu J 2017 Phys. Rev. Lett. 119 150405
[33] Datta N Generalized relative entropies, entanglement monotones and one-shot information theory URL: http://pirsa.org/13060003/PACS codes
[34] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[35] Song H, Luo S and Hong Y 2015 Phys. Rev. A 91 042110
[36] Budini A A 2018 Phys. Rev. A 97 052113
[37] Laine E M, Piilo J and Breuer H P 2010 Phys. Rev. A 81 062115
[1] Non-Markovianity of an atom in a semi-infinite rectangular waveguide
Jing Zeng(曾静), Yaju Song(宋亚菊), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(3): 030305.
[2] Impact of counter-rotating-wave term on quantum heat transfer and phonon statistics in nonequilibrium qubit-phonon hybrid system
Chen Wang(王晨), Lu-Qin Wang(王鲁钦), and Jie Ren(任捷). Chin. Phys. B, 2021, 30(3): 030506.
[3] Dissipative dynamics of an entangled three-qubit system via non-Hermitian Hamiltonian: Its correspondence with Markovian and non-Markovian regimes
M Rastegarzadeh and M K Tavassoly. Chin. Phys. B, 2021, 30(3): 034205.
[4] A polaron theory of quantum thermal transistor in nonequilibrium three-level systems
Chen Wang(王晨), Da-Zhi Xu(徐大智). Chin. Phys. B, 2020, 29(8): 080504.
[5] Non-Markovian entanglement transfer to distant atoms in a coupled superconducting resonator
Qingxia Mu(穆青霞), Peiying Lin(林佩英). Chin. Phys. B, 2020, 29(6): 060304.
[6] Generating Kerr nonlinearity with an engineered non-Markovian environment
Fei-Lei Xiong(熊飞雷), Wan-Li Yang(杨万里), Mang Feng(冯芒). Chin. Phys. B, 2020, 29(4): 040302.
[7] Dipole-dipole interactions enhance non-Markovianity and protect information against dissipation
Munsif Jan, Xiao-Ye Xu(许小冶), Qin-Qin Wang(王琴琴), Zhe Chen(陈哲), Yong-Jian Han(韩永建), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿). Chin. Phys. B, 2019, 28(9): 090303.
[8] Dynamics of two levitated nanospheres nonlinearly coupling with non-Markovian environment
Xun Li(李逊), Biao Xiong(熊标), Shilei Chao(晁石磊), Jiasen Jin(金家森), Ling Zhou(周玲). Chin. Phys. B, 2019, 28(5): 050302.
[9] Quantum speed-up capacity in different types of quantum channels for two-qubit open systems
Wei Wu(吴薇), Xin Liu(刘辛), Chao Wang(王超). Chin. Phys. B, 2018, 27(6): 060302.
[10] Dynamics of entanglement protection of two qubits using a driven laser field and detunings: Independent and common, Markovian and/or non-Markovian regimes
S Golkar, M K Tavassoly. Chin. Phys. B, 2018, 27(4): 040303.
[11] Optomechanical state transfer between two distant membranes in the presence of non-Markovian environments
Jiong Cheng(程泂), Xian-Ting Liang(梁先庭), Wen-Zhao Zhang(张闻钊), Xiangmei Duan(段香梅). Chin. Phys. B, 2018, 27(12): 120302.
[12] Quantum coherence and non-Markovianity of an atom in a dissipative cavity under weak measurement
Yu Liu(刘禹), Hong-Mei Zou(邹红梅), Mao-Fa Fang(方卯发). Chin. Phys. B, 2018, 27(1): 010304.
[13] Non-Markovian speedup dynamics control of the damped Jaynes-Cummings model with detuning
Kai Xu(徐凯), Wei Han(韩伟), Ying-Jie Zhang(张英杰), Heng Fan(范桁). Chin. Phys. B, 2018, 27(1): 010302.
[14] Quantum coherence preservation of atom with a classical driving field under non-Markovian environment
De-Ying Gao(高德营), Qiang Gao(高强), Yun-Jie Xia(夏云杰). Chin. Phys. B, 2017, 26(11): 110303.
[15] Discord and entanglement in non-Markovian environments at finite temperatures
Hong-Mei Zou(邹红梅), Mao-Fa Fang(方卯发). Chin. Phys. B, 2016, 25(9): 090302.
No Suggested Reading articles found!