|
|
Quasi-classical trajectory study of the stereodynamics of a Ne+H2+→NeH++H reaction |
Ge Mei-Hua(葛美华)† and Zheng Yu-Jun(郑雨军) |
School of Physics, Shandong University, Jinan 250100, China |
|
|
Abstract We have carried out a quasi-classical trajectory calculation for the reaction of ${\rm Ne + H_2^+}$ ($\nu=0$, $j=1$) $\to \,{\rm NeH^+ + H}$ on the ground state (1$^2$A$'$) using the LZHH potential energy surface constructed by L$\ddot{\rm u}$ et al. [L$\ddot{\rm u}$ S J, Zhang P Y, Han K L and He G Z 2010 J. Chem. Phys. 132 014303]. Differential cross sections at many collision energies indicate that the reaction is dominated by forward-scattering. In addition, the NeH$^+$ product shows rotationally hot and vibrationally cold distributions. Stereodynamical results indicate that the products are strongly polarized in the direction perpendicular to the scattering plane and that the products rotate mainly in planes parallel to the scattering plane.
|
Received: 19 February 2011
Revised: 21 March 2011
Accepted manuscript online:
|
PACS:
|
34.50.Lf
|
(Chemical reactions)
|
|
82.20.Kh
|
(Potential energy surfaces for chemical reactions)
|
|
82.20.Pm
|
(Rate constants, reaction cross sections, and activation energies)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 21073110) and the Independent Innovation
Foundation of Shandong University of China (Grant No. 10000059614011). |
Cite this article:
Ge Mei-Hua(葛美华) and Zheng Yu-Jun(郑雨军) Quasi-classical trajectory study of the stereodynamics of a Ne+H2+→NeH++H reaction 2011 Chin. Phys. B 20 083401
|
[1] |
Chu T S and Han K L 2008 Phys. Chem. Chem. Phys. 10 2431
|
[2] |
Chu T S, Zhang Y and Han K L 2006 Int. Rev. Phys. Chem. 25 201
|
[3] |
Dressler R A, Chiu Y, Levandier D J, Tang X N, Hou Y, Chang C, Houchins C, Xu H and Ng C Y 2006 J. Chem. Phys. 125 132306
|
[4] |
Zhang T, Qian X M, Tang X N, Ng C Y, Chiu Y, Levandier D J, Miller J S and Dressler R A 2003 J. Chem. Phys. 119 10175, and references therein
|
[5] |
Herman Z and Koyano I 1987 J. Chem. Soc. Faraday Trans. 83 127
|
[6] |
Van Pijkeren D, Boltjes E, Eck J V and Niehaus A 1984 Chem. Phys. 91 293
|
[7] |
Bilotta R M and Farrar J M 1981 J. Chem. Phys. 75 1776
|
[8] |
Lü S J, Zhang P Y, Han K L and He G Z 2010 J. Chem. Phys. 132 014303
|
[9] |
Mayneris J, Sierra J D and Gonz'alez M 2008 J. Chem. Phys. 128 194307
|
[10] |
Huarte-Larra naga F, Giménez X, Lucas J M, Aguilar A and Launay J M 2000 J. Phys. Chem. A 104 10227
|
[11] |
Huarte-Larra naga F, Giménez X, Lucas J M, Aguilar A and Launay J M 1999 Phys. Chem. Chem. Phys. 1 1125
|
[12] |
Gilibert M, Giménez X, Huarte-Larra naga F, Gonz'alez M, Aguilar A, Last I and Baer M 1999 J. Chem. Phys. 110 6278
|
[13] |
Gilibert M, Blasco R M, Gonz'alez M, Giménez X, Aguilar A, Last I and Baer M 1997 J. Phys. Chem. A 101 6821
|
[14] |
Kress J D, Walker R B, Hayes E F and Pendergast P 1994 J. Chem. Phys. 100 2728
|
[15] |
Pendergast P, Heck J M, Hayes E F and Jaquet R 1993 J. Chem. Phys. 98 4543, and references therein
|
[16] |
Urban J, Klimo V, Staemmler V and Jaquet R 1991 Z. Phys. D: At. Mol. Clusters 21 329
|
[17] |
Urban J, Jaquet R and Staemmler V 1990 Int. J. Quantum Chem. 38 339
|
[18] |
Hayes E F, Siu A K Q, Chapman F M and Matcha R L 1976 J. Chem. Phys. 65 1901
|
[19] |
Kuntz P J and Roach A C 1972 J. Chem. Soc. Faraday Trans. 68 259
|
[20] |
Polanyi J C and Wong W H 1969 J. Chem. Phys. 51 1439
|
[21] |
Zhang X and Han K L 2006 Int. Quantum Chem. 106 1815
|
[22] |
Li R J, Han K L, Li F E, Lu R C, He G Z and Lou N Q 1994 Chem. Phys. Lett. 220 281
|
[23] |
Han K L, He G Z and Lou N Q 1996 J. Chem. Phys. 105 8699, and references therein
|
[24] |
Han K L, Zheng X G, Sun B F, He G Z and Zhang R Q 1991 Chem. Phys. Lett. 181 474
|
[25] |
Liu S L and Shi Y 2011 Chin. Phys. B 20 013404
|
[26] |
Han B R, Zong F J, Wang C L, Ma W Y and Zhou J H 2010 Chem. Phys. 374 94
|
[27] |
Ge M H and Zheng Y J 2011 Theor. Chem. Acc. 129 173
|
[28] |
Kong H, Liu X G, Xu W W, Liang J J and Zhang Q G 2009 Acta Phys. Sin. 58 6926 (in Chinese)
|
[29] |
Xu Y, Zhao J, Yue D G, Zheng X Y and Meng Q T 2009 Chin. Phys. B 18 5308
|
[30] |
Zhao J, Xu Y and Meng Q T 2010 Chin. Phys. B 19 063403
|
[31] |
Hartree W S, Simons J P and Gonzalez-Urena A 1990 J. Chem. Soc. Faraday Trans. 86 17
|
[32] |
Prisant M G, Rettner C T and Zare R N 1984 J. Chem. Phys. 81 2699
|
[33] |
Chu T S 2010 J. Comput. Chem. 31 1385
|
[34] |
Li B and Han K L 2009 J. Phys. Chem. A 113 10189
|
[35] |
Ju L P, Han K L and Zhang J Z H 2009 J. Comput. Chem. 30 305
|
[36] |
Varandas A J C 2000 Int. Rev. Phys. Chem. 19 199
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|