Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(8): 083601    DOI: 10.1088/1674-1056/20/8/083601
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Surface-field-induced effects on morphologies of lamella-forming diblock copolymers in nanorod arrays

Wang Xiang-Hong(王向红)a)b)†, Li Shi-Ben(李士本)b), Zhang Lin-Xi(章林溪)b), and Liang Hao-Jun(梁好均)c)
a Department of Physics, Wenzhou Vocational and Technical College, Wenzhou 325035, China; b Department of Physics, Wenzhou University, Wenzhou 325035, China; c Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
Abstract  The surface-induced effect on the morphologies of lamella-forming diblock copolymers in nanorod arrays is studied by using the self-consistent field theory. In the simulation study, a rich variety of novel morphologies are observed by variations in the strength of the surface field for the diblock copolymers. Different surface-field-induced effects are examined for the diblock copolymers in the arrays with distinct preferential surfaces. It is observed that the majority-block preferential surfaces have more obvious induced effects than those of minority-block preferential surfaces. The strong surface fields exhibit different behaviours from those observed in the weak surface fields, by which the morphologies possess cylindrical symmetries. Results from this research deepen the knowledge of surface-induced effects in a confinement system, which may aid the fabrication of polymer-based nanomaterials.
Keywords:  diblock copolymer      surface-induced effect      morphology      nanorod array  
Received:  03 December 2010      Revised:  18 March 2011      Accepted manuscript online: 
PACS:  36.20.-r (Macromolecules and polymer molecules)  
  61.25.hk (Polymer melts and blends)  
  64.70.kmj  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 20374050, 20934004, 21074096, 50773072, and 90403022), the Outstanding Youth Fund of China (Grant No. 20525416), the National Basic Research Program of China (Grant No. 2005CB623800), Program for New Century Excellent Talents in University (Grant No. NCET-05-0538), the Natural Science Foundation of Zhejiang Province (Grant Nos. Y4090174 and Y6100033), and the Science Technology Development Plan of Wenzhou City, China (Grant No. H20080041).

Cite this article: 

Wang Xiang-Hong(王向红), Li Shi-Ben(李士本), Zhang Lin-Xi(章林溪), and Liang Hao-Jun(梁好均) Surface-field-induced effects on morphologies of lamella-forming diblock copolymers in nanorod arrays 2011 Chin. Phys. B 20 083601

[1] Soto-Figueroa C, Rodriguez-Hidalgo M R, Martinez-Magadan J M and Vicente L 2008 Macromolecules 41(9) 3297
[2] Kim M I, Wakada T, Akasaka S, Nishitsuji S, Saijo K, Hasegawa H, Ito K and Takenaka M 2008 Macromolecules 41 7667
[3] Takenaka M, Wakada T, Akasaka S, Nishitsuji S, Saijo K, Shimizu H, Kim M I and Hasegawa H 2007 Macromolecules 40 4399
[4] Yoon J, Lee W and Thomas E L 2006 Nano Lett. 6 2211
[5] Ruiz R, Kang H, Detcheverry F A, Dobisz E, Kercher D S, Albrecht T R, Pablo J J D and Nealey P F 2008 Science 321 936
[6] Xiang H, Shin K, Kim T, Moon S, McCarthy T J and Russell T P 2005 Polym. J. Sci. Part B 43 3377
[7] Huinink H P, van Dijk M A, Brokken-Zijp J C M and Sevink G J A 2001 Macromolecules 34 5325
[8] Wang Q, Nealey P F and Pablo J J D 2001 Macromolecules 34 3458
[9] Feng J, Liu H and Hu Y 2002 Macromol. Theroy Simul. 11 556
[10] Podariu I and Chakrabarti A 2003 J. Chem. Phys. 118 11249
[11] Wang Q, Nealey P F and Pablo J J D 2003 Macromolecules 36 1731
[12] Xu T, Hawker C J and Russell T P 2005 Macromolecules 38 2802
[13] Park I, Park S, Park H W, Chang T, Yang H and Ryu C Y 2006 Macromolecules 39 315
[14] Tsarkova L, Knoll A, Krausch G and Magerle R 2006 Macromolecules 39 3608
[15] Yin Y, Sun P, Jiang R, Li B, Jin Q, Ding D and Shi A C 2006 J. Chem. Phys. 124 184708
[16] Alexander-Katz A and Fredrickson G H 2007 Macromolecules 40 4075
[17] Heckmann M and Drossel B 2008 Macromolecules 41 7679
[18] Heckmanna M and Drossel B 2008 J. Chem. Phys. 129 214903
[19] Niihara K I, Sugimori H, Matsuwaki U, Hirato F, Morita H, Doi M, Masunaga H, Sasaki S and Jinnai H A 2008 Macromolecules 41 9318
[20] Tan H, Song Q, Yang S, Yan D and Shi A C 2008 Macromol. Theroy Simul. 17 45
[21] Park J H, Sun Y, Goldman Y E and Composto R J 2009 Macromolecules 42 1017
[22] Shin C, Ryu D Y, Huh J, Kim J H and Kim K W 2009 Macromolecules 42 2157
[23] Petrus P, Sal M L and Brennan J K 2010 Langmuir. 26 3695
[24] Chen D, Gong Y, Huang H, He T and Zhang F 2007 Macromolecules 40 6631
[25] Wang Q, Yan Q, Nealey P F and Pablo J J D 2000 J. Chem. Phys. 112 450
[26] Wang Q 2005 Macromol. Theroy Simul. 14 96
[27] He X, Song M, Liang H and Pan C 2001 J. Chem. Phys. 114 10510
[28] Sevink G J A, Zvelindovsky A V, Fraaije J G E M and Huinink H P J 2001 Chem. Phys. 115 8226
[29] Shin K, Xiang H, Moon S I, Kim T, McCarthy T J and Russel T P 2004 Science 306 76
[30] Wu Y, Cheng G, Katsov K, Sides S, Wang J, Tang J, Fredrickson G H, Moskovits M and Stusky G D 2004 Nat. Mater. 3 816
[31] Xiang H, Shin K, Kim T, Moon S I, McCarthy T J and Russell T P 2004 Macromolecules 37 5660
[32] Xiang H, Shin K, Kim T and Moon S I 2005 Macromolecules 38 1055
[33] Chen P, He X and Liang H 2006 J. Chem. Phys. 124 104906
[34] Feng J, Liu H and Hu Y 2006 Macromol. Theroy Simul. 15 674
[35] Feng J and Ruckenstein E 2006 J. Chem. Phys. 125 164911
[36] Feng J and Ruckenstein E 2006 Macromolecules 39 4899
[37] Li W and Wickham R A 2006 Macromolecules 39 8492
[38] Li W, Wickham R A and Garbary R A 2006 Macromolecules 39 806
[39] Yu B, Sun P, Chen T, Jin Q, Ding D, Li B and Shi A C 2006 Phys. Rev. Lett. 96 138306
[40] Chen P, Liang H and Shi A C 2007 Macromolecules 40 7329
[41] Wang Q 2007 J. Chem. Phys. 126 024903
[42] Yu B, Sun P, Chen T, Jin Q, Ding D, Li B and Shi A C 2007 J. Chem. Phys. 127 114906
[43] Sevink G J A and Zvelindovsky A V 2008 J. Chem. Phys. 128 084901
[44] Yu B, Jin Q, Ding D, Li B and Shi A C 2008 Macromolecules 41 4042
[45] Li S, Wang X, Zhang L, Liang H and Chen P 2009 Polymer 50 5149
[46] Fraaije J G E M and Sevink G J A 2003 Macromolecules 36 7891
[47] Arsenault A C and Rider D A 2005 J. Am. Chem. Soc. 127 9954
[48] Yabu H, Higuchi T and Shimomura M 2005 Adv. Mater. 17 2062
[49] Cheng J Y, Ross C A, Smith H I and Thomas E L 2006 Adv. Mater. 18 2505
[50] Feng J, Liu H and Hua Y 2007 Fluid Phase Equilibria 261 50
[51] Yu B, Li B, Jin Q, Ding D and Shi A C 2007 Macromolecules 40 9133
[52] Chen P, Liang H and Shi A C 2008 Macromolecules 41 8938
[53] Higuchi T, Tajima A, Motoyoshi K, Yabu H and Shimomura M 2008 Chem. Int. Ed. 47 8044
[54] Li S, Chen P, Wang X, Zhang L and Liang H J 2009 Chem. Phys. 130 014902
[55] Wang X, Li S, Chen P, Zhang L and Liang H 2009 Polymer 50 4964
[56] Li S, Ji Y, Chen P, Zhang L and Liang H 2010 Polymer 51 4994
[57] Fredrickson G H, Ganesan V and Drolet F 2002 Macromolecules 35 16
[58] Drolet F and Fredrickson G H 1999 Phys. Rev. Lett. 83 4317
[59] Liu M, Li S, Zhang L and Wang X 2010 Chin. Phys. B 19 028101
[60] Yu B, Sun P, Chen T, Jin Q, Ding D, Li B and Shi A C 2007 J. Chem. Phys. 126 204903
[61] Zhang Q 2009 Chin. Phys. B 18 658
[1] Tuning the particle size, physical properties, and photocatalytic activity of Ag3PO4 materials by changing the Ag+/PO43- ratio
Hung N M, Oanh L T M, Chung D P, Thang D V, Mai V T, Hang L T, and Minh N V. Chin. Phys. B, 2023, 32(3): 038102.
[2] Surface structure modification of ReSe2 nanosheets via carbon ion irradiation
Mei Qiao(乔梅), Tie-Jun Wang(王铁军), Yong Liu(刘泳), Tao Liu(刘涛), Shan Liu(刘珊), and Shi-Cai Xu(许士才). Chin. Phys. B, 2023, 32(2): 026101.
[3] Thermodynamically consistent model for diblock copolymer melts coupled with an electric field
Xiaowen Shen(沈晓文) and Qi Wang(王奇). Chin. Phys. B, 2022, 31(4): 048201.
[4] Migration and shape of cells on different interfaces
Xiaochen Wang(王晓晨), Qihui Fan (樊琪慧), and Fangfu Ye(叶方富). Chin. Phys. B, 2021, 30(9): 090502.
[5] Controllable preparation and disorder-dependent photoluminescence of morphologically different C60 microcrystals
Wen Cui(崔雯), De-Jun Li(李德军), Jin-Liang Guo(郭金良), Lang-Huan Zhao(赵琅嬛), Bing-Bing Liu(刘冰冰), and Shi-Shuai Sun(孙士帅). Chin. Phys. B, 2021, 30(8): 086101.
[6] Laser-induced thermal lens study of the role of morphology and hydroxyl group in the evolution of thermal diffusivity of copper oxide
Riya Sebastian, M S Swapna, Vimal Raj, and S Sankararaman. Chin. Phys. B, 2021, 30(6): 067801.
[7] Water and nutrient recovery from urine: A lead up trail using nano-structured In2S3 photo electrodes
R Jayakrishnan, T R Sreerev, and Adith Varma. Chin. Phys. B, 2021, 30(5): 056103.
[8] Close-coupled nozzle atomization integral simulation and powder preparation using vacuum induction gas atomization technology
Peng Wang(汪鹏), Jing Li(李静), Xin Wang(王欣), Heng-San Liu(刘恒三), Bin Fan(范斌), Ping Gan(甘萍), Rui-Feng Guo(郭瑞峰), Xue-Yuan Ge(葛学元), and Miao-Hui Wang(王淼辉). Chin. Phys. B, 2021, 30(2): 027502.
[9] Multi-phase-field simulation of austenite peritectic solidification based on a ferrite grain
Chao Yang(杨超), Jing Wang(王静), Junsheng Wang(王俊升), Yu Liu(刘瑜), Guomin Han(韩国民), Haifeng Song(宋海峰), and Houbing Huang(黄厚兵). Chin. Phys. B, 2021, 30(1): 018201.
[10] Regulation mechanism of catalyst structure on diamond crystal morphology under HPHT process
Ya-Dong Li(李亚东), Yong-Shan Cheng(程永珊), Meng-Jie Su(宿梦洁), Qi-Fu Ran(冉启甫), Chun-Xiao Wang(王春晓), Hong-An Ma(马红安), Chao Fang(房超), Liang-Chao Chen(陈良超). Chin. Phys. B, 2020, 29(7): 078101.
[11] Influence of N+ implantation on structure, morphology, and corrosion behavior of Al in NaCl solution
Hadi Savaloni, Rezvan Karami, Helma Sadat Bahari, Fateme Abdi. Chin. Phys. B, 2020, 29(5): 058102.
[12] Low-temperature plasma enhanced atomic layer deposition of large area HfS2 nanocrystal thin films
Ailing Chang(常爱玲), Yichen Mao(毛亦琛), Zhiwei Huang(黄志伟), Haiyang Hong(洪海洋), Jianfang Xu(徐剑芳), Wei Huang(黄巍), Songyan Chen(陈松岩), Cheng Li(李成). Chin. Phys. B, 2020, 29(3): 038102.
[13] Influence of Zr50Cu50 thin film metallic glass as buffer layer on the structural and optoelectrical properties of AZO films
Bao-Qing Zhang(张宝庆), Gao-Peng Liu(刘高鹏), Hai-Tao Zong(宗海涛), Li-Ge Fu(付丽歌), Zhi-Fei Wei(魏志飞), Xiao-Wei Yang(杨晓炜), Guo-Hua Cao(曹国华). Chin. Phys. B, 2020, 29(3): 037303.
[14] Energy stored in nanoscale water capillary bridges formed between chemically heterogeneous surfaces with circular patches
Bin-Ze Tang(唐宾泽), Xue-Jia Yu(余雪佳), Sergey V. Buldyrev, Nicolas Giovambattista§, and Li-Mei Xu(徐莉梅)¶. Chin. Phys. B, 2020, 29(11): 114703.
[15] Exploring alkylthiol additives in PBDB-T:ITIC blended active layers for solar cell applications
Xiang Li(李想), Zhiqun He(何志群), Mengjie Sun(孙盟杰), Huimin Zhang(张慧敏), Zebang Guo(郭泽邦), Yajun Xu(许亚军), Han Li(李瀚), Chunjun Liang(梁春军), Xiping Jing(荆西平). Chin. Phys. B, 2019, 28(8): 088802.
No Suggested Reading articles found!