|
|
Surface-field-induced effects on morphologies of lamella-forming diblock copolymers in nanorod arrays |
Wang Xiang-Hong(王向红)a)b)†, Li Shi-Ben(李士本)b), Zhang Lin-Xi(章林溪)b), and Liang Hao-Jun(梁好均)c) |
a Department of Physics, Wenzhou Vocational and Technical College, Wenzhou 325035, China; b Department of Physics, Wenzhou University, Wenzhou 325035, China; c Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China |
|
|
Abstract The surface-induced effect on the morphologies of lamella-forming diblock copolymers in nanorod arrays is studied by using the self-consistent field theory. In the simulation study, a rich variety of novel morphologies are observed by variations in the strength of the surface field for the diblock copolymers. Different surface-field-induced effects are examined for the diblock copolymers in the arrays with distinct preferential surfaces. It is observed that the majority-block preferential surfaces have more obvious induced effects than those of minority-block preferential surfaces. The strong surface fields exhibit different behaviours from those observed in the weak surface fields, by which the morphologies possess cylindrical symmetries. Results from this research deepen the knowledge of surface-induced effects in a confinement system, which may aid the fabrication of polymer-based nanomaterials.
|
Received: 03 December 2010
Revised: 18 March 2011
Accepted manuscript online:
|
PACS:
|
36.20.-r
|
(Macromolecules and polymer molecules)
|
|
61.25.hk
|
(Polymer melts and blends)
|
|
64.70.kmj
|
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 20374050, 20934004, 21074096, 50773072,
and 90403022), the Outstanding Youth Fund of China (Grant No. 20525416), the National Basic Research Program of China
(Grant No. 2005CB623800), Program for New Century Excellent Talents in University (Grant No. NCET-05-0538), the Natural
Science Foundation of Zhejiang Province (Grant Nos. Y4090174 and Y6100033), and the Science Technology Development Plan
of Wenzhou City, China (Grant No. H20080041). |
Cite this article:
Wang Xiang-Hong(王向红), Li Shi-Ben(李士本), Zhang Lin-Xi(章林溪), and Liang Hao-Jun(梁好均) Surface-field-induced effects on morphologies of lamella-forming diblock copolymers in nanorod arrays 2011 Chin. Phys. B 20 083601
|
[1] |
Soto-Figueroa C, Rodriguez-Hidalgo M R, Martinez-Magadan J M and Vicente L 2008 Macromolecules 41(9) 3297
|
[2] |
Kim M I, Wakada T, Akasaka S, Nishitsuji S, Saijo K, Hasegawa H, Ito K and Takenaka M 2008 Macromolecules 41 7667
|
[3] |
Takenaka M, Wakada T, Akasaka S, Nishitsuji S, Saijo K, Shimizu H, Kim M I and Hasegawa H 2007 Macromolecules 40 4399
|
[4] |
Yoon J, Lee W and Thomas E L 2006 Nano Lett. 6 2211
|
[5] |
Ruiz R, Kang H, Detcheverry F A, Dobisz E, Kercher D S, Albrecht T R, Pablo J J D and Nealey P F 2008 Science 321 936
|
[6] |
Xiang H, Shin K, Kim T, Moon S, McCarthy T J and Russell T P 2005 Polym. J. Sci. Part B 43 3377
|
[7] |
Huinink H P, van Dijk M A, Brokken-Zijp J C M and Sevink G J A 2001 Macromolecules 34 5325
|
[8] |
Wang Q, Nealey P F and Pablo J J D 2001 Macromolecules 34 3458
|
[9] |
Feng J, Liu H and Hu Y 2002 Macromol. Theroy Simul. 11 556
|
[10] |
Podariu I and Chakrabarti A 2003 J. Chem. Phys. 118 11249
|
[11] |
Wang Q, Nealey P F and Pablo J J D 2003 Macromolecules 36 1731
|
[12] |
Xu T, Hawker C J and Russell T P 2005 Macromolecules 38 2802
|
[13] |
Park I, Park S, Park H W, Chang T, Yang H and Ryu C Y 2006 Macromolecules 39 315
|
[14] |
Tsarkova L, Knoll A, Krausch G and Magerle R 2006 Macromolecules 39 3608
|
[15] |
Yin Y, Sun P, Jiang R, Li B, Jin Q, Ding D and Shi A C 2006 J. Chem. Phys. 124 184708
|
[16] |
Alexander-Katz A and Fredrickson G H 2007 Macromolecules 40 4075
|
[17] |
Heckmann M and Drossel B 2008 Macromolecules 41 7679
|
[18] |
Heckmanna M and Drossel B 2008 J. Chem. Phys. 129 214903
|
[19] |
Niihara K I, Sugimori H, Matsuwaki U, Hirato F, Morita H, Doi M, Masunaga H, Sasaki S and Jinnai H A 2008 Macromolecules 41 9318
|
[20] |
Tan H, Song Q, Yang S, Yan D and Shi A C 2008 Macromol. Theroy Simul. 17 45
|
[21] |
Park J H, Sun Y, Goldman Y E and Composto R J 2009 Macromolecules 42 1017
|
[22] |
Shin C, Ryu D Y, Huh J, Kim J H and Kim K W 2009 Macromolecules 42 2157
|
[23] |
Petrus P, Sal M L and Brennan J K 2010 Langmuir. 26 3695
|
[24] |
Chen D, Gong Y, Huang H, He T and Zhang F 2007 Macromolecules 40 6631
|
[25] |
Wang Q, Yan Q, Nealey P F and Pablo J J D 2000 J. Chem. Phys. 112 450
|
[26] |
Wang Q 2005 Macromol. Theroy Simul. 14 96
|
[27] |
He X, Song M, Liang H and Pan C 2001 J. Chem. Phys. 114 10510
|
[28] |
Sevink G J A, Zvelindovsky A V, Fraaije J G E M and Huinink H P J 2001 Chem. Phys. 115 8226
|
[29] |
Shin K, Xiang H, Moon S I, Kim T, McCarthy T J and Russel T P 2004 Science 306 76
|
[30] |
Wu Y, Cheng G, Katsov K, Sides S, Wang J, Tang J, Fredrickson G H, Moskovits M and Stusky G D 2004 Nat. Mater. 3 816
|
[31] |
Xiang H, Shin K, Kim T, Moon S I, McCarthy T J and Russell T P 2004 Macromolecules 37 5660
|
[32] |
Xiang H, Shin K, Kim T and Moon S I 2005 Macromolecules 38 1055
|
[33] |
Chen P, He X and Liang H 2006 J. Chem. Phys. 124 104906
|
[34] |
Feng J, Liu H and Hu Y 2006 Macromol. Theroy Simul. 15 674
|
[35] |
Feng J and Ruckenstein E 2006 J. Chem. Phys. 125 164911
|
[36] |
Feng J and Ruckenstein E 2006 Macromolecules 39 4899
|
[37] |
Li W and Wickham R A 2006 Macromolecules 39 8492
|
[38] |
Li W, Wickham R A and Garbary R A 2006 Macromolecules 39 806
|
[39] |
Yu B, Sun P, Chen T, Jin Q, Ding D, Li B and Shi A C 2006 Phys. Rev. Lett. 96 138306
|
[40] |
Chen P, Liang H and Shi A C 2007 Macromolecules 40 7329
|
[41] |
Wang Q 2007 J. Chem. Phys. 126 024903
|
[42] |
Yu B, Sun P, Chen T, Jin Q, Ding D, Li B and Shi A C 2007 J. Chem. Phys. 127 114906
|
[43] |
Sevink G J A and Zvelindovsky A V 2008 J. Chem. Phys. 128 084901
|
[44] |
Yu B, Jin Q, Ding D, Li B and Shi A C 2008 Macromolecules 41 4042
|
[45] |
Li S, Wang X, Zhang L, Liang H and Chen P 2009 Polymer 50 5149
|
[46] |
Fraaije J G E M and Sevink G J A 2003 Macromolecules 36 7891
|
[47] |
Arsenault A C and Rider D A 2005 J. Am. Chem. Soc. 127 9954
|
[48] |
Yabu H, Higuchi T and Shimomura M 2005 Adv. Mater. 17 2062
|
[49] |
Cheng J Y, Ross C A, Smith H I and Thomas E L 2006 Adv. Mater. 18 2505
|
[50] |
Feng J, Liu H and Hua Y 2007 Fluid Phase Equilibria 261 50
|
[51] |
Yu B, Li B, Jin Q, Ding D and Shi A C 2007 Macromolecules 40 9133
|
[52] |
Chen P, Liang H and Shi A C 2008 Macromolecules 41 8938
|
[53] |
Higuchi T, Tajima A, Motoyoshi K, Yabu H and Shimomura M 2008 Chem. Int. Ed. 47 8044
|
[54] |
Li S, Chen P, Wang X, Zhang L and Liang H J 2009 Chem. Phys. 130 014902
|
[55] |
Wang X, Li S, Chen P, Zhang L and Liang H 2009 Polymer 50 4964
|
[56] |
Li S, Ji Y, Chen P, Zhang L and Liang H 2010 Polymer 51 4994
|
[57] |
Fredrickson G H, Ganesan V and Drolet F 2002 Macromolecules 35 16
|
[58] |
Drolet F and Fredrickson G H 1999 Phys. Rev. Lett. 83 4317
|
[59] |
Liu M, Li S, Zhang L and Wang X 2010 Chin. Phys. B 19 028101
|
[60] |
Yu B, Sun P, Chen T, Jin Q, Ding D, Li B and Shi A C 2007 J. Chem. Phys. 126 204903
|
[61] |
Zhang Q 2009 Chin. Phys. B 18 658
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|