Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(7): 077305    DOI: 10.1088/1674-1056/20/7/077305
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Transport properties through double-magnetic-barrier structures in graphene

Wang Su-Xin(王素新)a)b), Li Zhi-Wen(李志文) a)b), Liu Jian-Jun(刘建军)c), and Li Yu-Xian(李玉现) c)†
a Department of Physics, Hebei Normal College for Nationalities, Chengde 067000, China; b Hebei Advanced Film Laboratory, Shijiazhuang 050016, Chinac College of Physics, Hebei Normal University, Shijiazhuang 050016, China
Abstract  We study electrons tunneling through a double-magnetic-barrier structure on the surface of monolayer graphene. The transmission probability and the conductance are calculated by using the transfer matrix method. The results show that the normal incident transmission probability is blocked by the magnetic vector potential and the Klein tunneling region depends strongly on the direction of the incidence electron. The transmission probability and the conductance can be modulated by changing structural parameters of the barrier, such as width and height, offering a possibility to control electron beams on graphene.
Keywords:  transmission probability      conductance      double-magnetic-barrier      graphene  
Received:  07 December 2010      Revised:  28 January 2011      Accepted manuscript online: 
PACS:  73.63.-b (Electronic transport in nanoscale materials and structures)  
  03.65.Pm (Relativistic wave equations)  
  75.70.Ak (Magnetic properties of monolayers and thin films)  
  73.23.Ad (Ballistic transport)  

Cite this article: 

Wang Su-Xin(王素新), Li Zhi-Wen(李志文), Liu Jian-Jun(刘建军), and Li Yu-Xian(李玉现) Transport properties through double-magnetic-barrier structures in graphene 2011 Chin. Phys. B 20 077305

[1] Katsnelson M I, Novoselov K S and Geim A K 2006 Nature Phys. 2 620
[2] Silvestrov P G and Efetov K B 2007 Phys. Rev. Lett. 98 016802
[3] Cheianov V V and Falko V I 2006 Phys. Rev. B 74 041403 disorder
[4] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[5] Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
[6] Berger C, Song Z M, Li X B, et al., 2006 Science 312 1191
[7] Jin Z F, Tong G P and Jiang Y J 2009 Acta Phys. Sin. 58 8537 (in Chinese)
[8] Bai C X and Zhang X D 2007 Phys. Rev. B 76 075430
[9] Pereira Jr J M, Mlinar V and Peeters F M 2006 Phys.Rev. B 74 045424
[10] Li Q, Cheng Z G, Li Z J, Wang Z H and Fang Y 2010 Chin. Phys. B 19 097307
[11] Hu H, Cai J M, Zhang C D, Gao M, Pan Y, Du S X, Sun Q F, Niu Q, Xie X C and Gao H J 2010 Chin. Phys. B 19 037202
[12] Klein O 1929 Z. Phys. 53 157
[13] Li S S, Chang K and Xia J B 2006 Phys. Rev. B 68 245306
[14] Li S S, Abliz A, Yang F H, Niu Z C, Feng S L and Xia J B 2002 J. Appl. Phys. 92 6662
[15] Li S S, Abliz A, Yang F H, Niu Z C, Feng S L and Xia J B 2003 J. Appl. Phys. 94 5402
[16] de Martino A, Dell'Anna L and Egger R 2007 Phys. Rev. Lett. 98 066802
[17] Pan H Z, Xu M, Chen L, Sun Y Y and Wang Y L 2010 Acta Phys. Sin. 59 6443 (in Chinese)
[18] Matulis A and Peeters F M 2007 Phys. Rev. B 75 125429
[19] Park S and Sim H S 2008 Phys. Rev. B 77 075433
[20] Oroszlany L, Rakyta P, Kormanyos A, Lambert C J and Cserti J 2008 Phys. Rev. B 77 081403
[21] Zhai F and Chang K 2008 Phys. Rev. B 77 113409
[22] Zhu R and Guo Y 2007 Appl. Phys. Lett. 91 252113
[23] Li Y X 2010 J. Phys: Condens. Matter 22 015302
[24] Büttiker M, Imry Y, Landauer R and Pinhas S 1985 Phys. Rev. B 31 6207
[25] Xu H and Heinzel T 2008 Phys. Rev. B 77 245401
[26] Buttiker M, Imry Y, Landauer R and Pinhas S 1985 Phys. Rev. B 31 6207
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] Hall conductance of a non-Hermitian two-band system with k-dependent decay rates
Junjie Wang(王俊杰), Fude Li(李福德), and Xuexi Yi(衣学喜). Chin. Phys. B, 2023, 32(2): 020305.
[5] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[6] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[7] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[8] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[9] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[10] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[11] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[12] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[13] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[14] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[15] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
No Suggested Reading articles found!