Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(4): 044203    DOI: 10.1088/1674-1056/20/4/044203
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Control of slow light in a ring-out-ring structure

Wang Nan(王楠)a)b), Zhang Yun-Dong(掌蕴东)a), and Yuan Ping(袁萍)a)
a Institute of Opto-electronics, Harbin Institute of Technology, Harbin 150080, China; b Engineering Research Center of Optoelectronic Materials & Devices, School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, China
Abstract  This paper proposes a ring-out-ring structure of coupled optical resonators to yield coupled-resonator-induced transparency (CRIT). Considering the insertion loss of the coupler, it theoretically deduces the transmission and the effective phase shift. The influences of the insertion loss of the coupler on the transmittance, the effective phase shift, the group index and the CRIT linewidth are fully studied. We find that the increase in multiple m can effectively enhance the normal dispersion and the group index of the proposed structure. Moreover, the specific expression of the group index at resonance is theoretically deduced and discussed for the proposed structure with two rings. The result shows that the multiple m between the lengths of ring 1 and ring 2 can enhance the group index to m times that of the structure with two equal-sized rings at resonance. The control of slow light in the proposed structure is important for applications of highly sensitivity gyroscopes, optical delay lines and optical buffers, etc.
Keywords:  ring-out-ring structure      dispersion      group index      slow light  
Received:  11 June 2010      Revised:  18 October 2010      Accepted manuscript online: 
PACS:  42.50.-p (Quantum optics)  
  42.79.Gn (Optical waveguides and couplers)  
  42.81.Qb (Fiber waveguides, couplers, and arrays)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60878006 and 61078006).

Cite this article: 

Wang Nan(王楠), Zhang Yun-Dong(掌蕴东), and Yuan Ping(袁萍) Control of slow light in a ring-out-ring structure 2011 Chin. Phys. B 20 044203

[1] Hau L V, Harris S E, Dutton Z and Behroozi C H 1999 Nature 397 594
[2] Budker D, Kimball D F, Rochester A M and Yashchuk V V 1999 it Phys. Rev. Lett. 83 1767
[3] Wang L R, Zhao Y T, Ma J, Zhao J M, Xiao L T and Jia S T 2006 Chin. Phys. 15 365
[4] Chen A X, Deng L and Wu Q P 2007 it Chin. Phys. 16 3386
[5] Podivilov E, Sturman B, Shumelyuk A and Odoulov S 2003 it Phys. Rev. Lett. 91 083902
[6] Zhang G, Fang B, Rong D and Xu J 2004 Phys. Rev. Lett. 93 133903
[7] Bigelow M S, Lepeshkin N N and Boyd R W 2003 Phys. Rev. Lett. 90 113903
[8] Zhang Y D, Fan B H, Yuan P and Ma Z G 2004 Chin. Phys. Lett. 21 87
[9] Schweinsberg A, Lepeshkin N N, Bigelow M S, Boyd R W and Jarabo S 2006 Europhys. Lett. 73 218
[10] Smith D, Chang H, Fuller K A, Rosenberger A T and Boyd R W 2004 Phys. Rev. A 69 063804
[11] Yanik M F and Fan S 2004 Phys. Rev. Lett. 92 083901
[12] Xu Q, Sandhu S, Povinelli M L, Shakya J, Fan S and Lipson M 2006 Phys. Rev. Lett. 96 123901
[13] Wang N, Zhang Y, Wang J, Tian H, Wang H, Zhang X, Zhang J and Yuan P 2009 Acta Phys. Sin. 58 7672 (in Chinese)
[14] Totsuka K, Kobayashi N and Tomita M 2007 Phys. Rev. Lett. 98 213904
[15] Dumeige Y, Nguyen T K N, Ghisa L, Trebaol S and Feron P 2008 Phys. Rev. A 78 013818
[16] Povinelli M L, Johnson S G and Joannopoulos J D 2005 Opt. Express 13 7145
[17] Finlayson C E, Cattaneo F and Perney N M B 2006 Phys. Rev. E 73 016619
[18] Krauss T F 2007 J. Phys. D: Appl. Phys. 40 2666
[19] Baba T and Mori D 2007 J. Phys. D: Appl. Phys. 40 2659
[20] Tian K, Arora W, Takahashi S, Hong J and Barbastathis G 2009 it Phys. Rev. B 80 34305
[21] Boller K J, Imamoglu A and Harris S E 1991 Phys. Rev. Lett. 66 2593
[22] Scheuer J and Yariv A 2006 Phys. Rev. Lett. 96 3901
[23] Vahala K J 2003 Nature 424 839
[24] Xu Q, Schmidt B, Pradhan S and Lipson M 2005 Nature 435 235
[25] Rakovich Y P, Boland J J and Donegan J F 2005 Opt. Lett. 30 2775
[26] Poon J K S, Zhu L, DeRose G A and Yariv A 2006 Opt. Lett. 31 456
[27] Peng C, Li Z and Xu A 2007 Opt. Express 15 3864
[28] Peng C, Li Z and Xu A 2007 Appl. Opt. 46 4125
[29] Zhang Y, Wang N, Tian H, Wang H, Qiu W, Wang J and Yuan P 2008 Phys. Lett. A 372 5848
[30] Smith D, Chang H and Fuller K A 2003 J. Opt. Soc. Am. B 20 1967
[1] Effect of porous surface layer on wave propagation in elastic cylinder immersed in fluid
Na-Na Su(苏娜娜), Qing-Bang Han(韩庆邦), Ming-Lei Shan(单鸣雷), and Cheng Yin(殷澄). Chin. Phys. B, 2023, 32(1): 014301.
[2] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[3] Small-angle neutron scattering study on the stability of oxide nanoparticles in long-term thermally aged 9Cr-oxide dispersion strengthened steel
Peng-Lin Gao(高朋林), Jian Gong(龚建), Qiang Tian(田强), Gung-Ai Sun(孙光爱), Hai-Yang Yan(闫海洋),Liang Chen(陈良), Liang-Fei Bai(白亮飞), Zhi-Meng Guo(郭志猛), and Xin Ju(巨新). Chin. Phys. B, 2022, 31(5): 056102.
[4] Kinetic Alfvén waves in a deuterium-tritium fusion plasma with slowing-down distributed α-particles
Fei-Fei Lu(路飞飞) and San-Qiu Liu(刘三秋). Chin. Phys. B, 2022, 31(3): 035201.
[5] Highly tunable plasmon-induced transparency with Dirac semimetal metamaterials
Chunzhen Fan(范春珍), Peiwen Ren(任佩雯), Yuanlin Jia(贾渊琳), Shuangmei Zhu(朱双美), and Junqiao Wang(王俊俏). Chin. Phys. B, 2021, 30(9): 096103.
[6] Tunable optomechanically induced transparency and fast-slow light in a loop-coupled optomechanical system
Qinghong Liao(廖庆洪), Xiaoqian Wang(王晓倩), Gaoqian He(何高倩), and Liangtao Zhou(周良涛). Chin. Phys. B, 2021, 30(9): 094205.
[7] Spectral polarization-encoding of broadband laser pulses by optical rotatory dispersion and its applications in spectral manipulation
Xiaowei Lu(陆小微), Congying Wang(王聪颖), Xuanke Zeng(曾选科), Jiahe Lin(林家和), Yi Cai(蔡懿), Qinggang Lin(林庆钢), Huangcheng Shangguan(上官煌城), Zhenkuan Chen(陈振宽), Shixiang Xu(徐世祥), and Jingzhen Li(李景镇). Chin. Phys. B, 2021, 30(7): 077801.
[8] Design and fabrication of GeAsSeS chalcogenide waveguides with thermal annealing
Limeng Zhang(张李萌), Jinbo Chen(陈锦波), Jierong Gu(顾杰荣), Yixiao Gao(高一骁), Xiang Shen(沈祥), Yimin Chen(陈益敏), and Tiefeng Xu(徐铁峰). Chin. Phys. B, 2021, 30(3): 034210.
[9] Phonon dispersion relations of crystalline solids based on LAMMPS package
Zhiyong Wei(魏志勇), Tianhang Qi(戚天航), Weiyu Chen(陈伟宇), and Yunfei Chen(陈云飞). Chin. Phys. B, 2021, 30(11): 114301.
[10] Novel structures and mechanical properties of Zr2N: Ab initio description under high pressures
Minru Wen(文敏儒), Xing Xie(谢兴), Zhixun Xie(谢植勋), Huafeng Dong(董华锋), Xin Zhang(张欣), Fugen Wu(吴福根), and Chong-Yu Wang(王崇愚). Chin. Phys. B, 2021, 30(1): 016403.
[11] Broadband and efficient second harmonic generation in LiNbO3-LiTaO3 composite ridge waveguides at telecom-band
Xin-Tong Zhang(张欣桐). Chin. Phys. B, 2021, 30(1): 014205.
[12] An ultrafast and low-power slow light tuning mechanism for compact aperture-coupled disk resonators
Bo-Yun Wang(王波云), Yue-Hong Zhu(朱月红), Jing Zhang(张静), Qing-Dong Zeng(曾庆栋), Jun Du(杜君), Tao Wang(王涛), Hua-Qing Yu(余华清). Chin. Phys. B, 2020, 29(8): 084211.
[13] Microwave frequency transfer over a 112-km urban fiber link based on electronic phase compensation
Wen-Xiang Xue(薛文祥), Wen-Yu Zhao(赵文宇), Hong-Lei Quan(全洪雷), Cui-Chen Zhao(赵粹臣), Yan Xing(邢燕), Hai-Feng Jiang(姜海峰), Shou-Gang Zhang(张首刚). Chin. Phys. B, 2020, 29(6): 064209.
[14] Dynamics of the plane and solitary waves in a Noguchi network: Effects of the nonlinear quadratic dispersion
S A T Fonkoua, M S Ngounou, G R Deffo, F B Pelap, S B Yamgoue, A Fomethe. Chin. Phys. B, 2020, 29(3): 030501.
[15] Graphene's photonic and optoelectronic properties-A review
A J Wirth-Lima, P P Alves-Sousa, W Bezerra-Fraga. Chin. Phys. B, 2020, 29(3): 037801.
No Suggested Reading articles found!