Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(11): 114301    DOI: 10.1088/1674-1056/abf4c0
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Phonon dispersion relations of crystalline solids based on LAMMPS package

Zhiyong Wei(魏志勇)1,†, Tianhang Qi(戚天航)1, Weiyu Chen(陈伟宇)2, and Yunfei Chen(陈云飞)1
1 Jiangsu Key Laboratory for Design & Manufacture of Micro/Nano Biomedical Instruments and School of Mechanical Engineering, Southeast University, Nanjing 211189, China;
2 College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China
Abstract  The phonon dispersion relations of crystalline solids play an important role in determining the mechanical and thermal properties of materials. The phonon dispersion relation, as well as the vibrational density of states, is also often used as an indicator of variation of lattice thermal conductivity with the external stress, defects, etc. In this study, a simple and fast tool is proposed to acquire the phonon dispersion relation of crystalline solids based on the LAMMPS package. The theoretical details for the calculation of the phonon dispersion relation are derived mathematically and the computational flow chart is present. The tool is first used to calculate the phonon dispersion relation of graphene with two atoms in the unit cell. Then, the phonon dispersions corresponding to several potentials or force fields, which are commonly used in the LAMMPS package to modeling the graphene, are obtained to compare with that from the DFT calculation. They are further extended to evaluate the accuracy of the used potentials before the molecular dynamics simulation. The tool is also used to calculate the phonon dispersion relation of superlattice structures that contains more than one hundred of atoms in the unit cell, which predicts the phonon band gaps along the cross-plane direction. Since the phonon dispersion relation plays an important role in the physical properties of condensed matter, the proposed tool for the calculation of the phonon dispersion relation is of great significance for predicting and explaining the mechanical and thermal properties of crystalline solids.
Keywords:  phonon dispersion relation      molecular dynamics      force constant      potential function  
Received:  23 February 2021      Revised:  20 March 2021      Accepted manuscript online:  05 April 2021
PACS:  43.35.+d (Ultrasonics, quantum acoustics, and physical effects of sound)  
  62.60.+v (Acoustical properties of liquids)  
  63.20.-e (Phonons in crystal lattices)  
Fund: Project supported by the National Key R&D Program of China (Grant No. 2017YFB0406000) and the Southeast University “Zhongying Young Scholars” Project.
Corresponding Authors:  Zhiyong Wei     E-mail:  zywei@seu.edu.cn

Cite this article: 

Zhiyong Wei(魏志勇), Tianhang Qi(戚天航), Weiyu Chen(陈伟宇), and Yunfei Chen(陈云飞) Phonon dispersion relations of crystalline solids based on LAMMPS package 2021 Chin. Phys. B 30 114301

[1] Zhang Z W, Ouyang Y L, Cheng Y, Chen J, Li N B and Zhang G 2020 Phys. Rep. 860 1
[2] Zhang X J, Chen C L and Feng F L 2013 Chin. Phys. B 22 096301
[3] Wei Z Y, Yang J K, Bi K D and Chen Y F 2014 J. Appl. Phys. 116 153503
[4] Qiu B and Ruan X L 2012 Appl. Phys. Lett. 100 193101
[5] Ghosh S, Bao W Z, Nika D L, Subrina S, Pokatilov E P, Lau C N and Balandin A A 2010 Nat. Mater. 9 555
[6] Wei Z Y, Yang Z, Liu M, Wu H L, Chen Y F and Yang F 2020 J. Appl. Phys. 127 055105
[7] Swartz E T and Pohl R O 1989 Rev. Mod. Phys. 61 605
[8] Chen J, Zhang G and Li B W 2009 Appl. Phys. Lett. 95 073117
[9] Auld B A 1973 Acoustic Fields and Waves in Solids (New York: John Wiley & Sons) pp. 57-100
[10] Zhang Z W, Ouyang Y L, Guo Y Y, Nakayama T, Nomura M, Volz S and Chen J 2020 Phys. Rev. B 102 195302
[11] Zhang Z W, Chen J and Li B W 2017 Nanoscale 9 14208
[12] Wei Z Y, Yang J K, Bi K D and Chen Y F 2015 J. Appl. Phys. 118 155103
[13] Born M and Huang K 1954 Dynamical Theory of Crystal Lattices (Oxford: Clarendon) pp. 223-225
[14] Wei Z Y, Wehmeyer G, Dames C and Chen Y F 2016 Nanoscale 8 16612
[15] Koukaras E N, Kalosakas G, Galiotis C and Papagelis K 2015 Sci. Rep. 5 12923
[16] Gale J D and Rohl A L 2003 Mol. Simulat. 29 291
[17] Togo A and Tanaka I 2015 Scripta Mater. 108 1
[18] Kresse G and Furthmuller J 1996 Comput. Mater. Sci. 6 15
[19] Giannozzi P, Baroni S and Bonini N 2009 J. Phys.: Condens. Matter 21 395502
[20] Plimpton S 1995 J. Comput. Phys. 117 1
[21] Kong L T 2011 Comput. Phys. Commun. 182 2201
[22] Esfarjani K and Stokes H T 2008 Phys. Rev. B 77 144112
[23] Lindsay L and Broido D A 2010 Phys. Rev. B 81 205441
[24] Stuart S J, Tutein A B and Harrison J A 2000 J. Chem. Phys. 112 6472
[25] Chenoweth K, Van Duin A C T and Goddard W A 2008 J. Phys. Chem. A 112 1040
[26] Sun H, Mumby S J, Maple J R and Hagler A T 1994 J. Am. Chem. Soc. 116 2978
[27] Wei Z Y, Yang F, Bi K D, Yang J K and Chen Y F 2017 Carbon 113 212
[28] Wang Y, Zhan H F, Xiang Y, Yang C, Wang C M and Zhang Y Y 2015 J. Phys. Chem. C 119 12731
[29] Stillinger F H and Weber T A 1985 Phys. Rev. B 31 5262
[30] Zhang W, Fisher T S and Mingo N 2007 Numer. Heat. Trans. B Fund. 51 333
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[3] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[4] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[5] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[6] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[7] Effect of void size and Mg contents on plastic deformation behaviors of Al-Mg alloy with pre-existing void: Molecular dynamics study
Ning Wei(魏宁), Ai-Qiang Shi(史爱强), Zhi-Hui Li(李志辉), Bing-Xian Ou(区炳显), Si-Han Zhao(赵思涵), and Jun-Hua Zhao(赵军华). Chin. Phys. B, 2022, 31(6): 066203.
[8] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[9] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[10] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[11] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[12] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[13] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[14] Effect of the number of defect particles on the structure and dispersion relation of a two-dimensional dust lattice system
Rangyue Zhang(张壤月), Guannan Shi(史冠男), Hanyu Tang(唐瀚宇), Yang Liu(刘阳), Yanhong Liu(刘艳红), and Feng Huang(黄峰). Chin. Phys. B, 2022, 31(3): 035204.
[15] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
No Suggested Reading articles found!