Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(8): 084211    DOI: 10.1088/1674-1056/ab9df1
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

An ultrafast and low-power slow light tuning mechanism for compact aperture-coupled disk resonators

Bo-Yun Wang(王波云)1, Yue-Hong Zhu(朱月红)1, Jing Zhang(张静)1, Qing-Dong Zeng(曾庆栋)1, Jun Du(杜君)1, Tao Wang(王涛)2, Hua-Qing Yu(余华清)1
1 School of Physics and Electronic-information Engineering, Hubei Engineering University, Xiaogan 432000, China;
2 Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract  An ultrafast and low-power slow light tuning mechanism based on plasmon-induced transparency (PIT) for two disk cavities aperture-coupled to a metal-dielectric-metal plasmonic waveguide system is investigated numerically and analytically. The optical Kerr effect is enhanced by the local electromagnetic field of surface plasmon polaritons, slow light, and graphene-Ag composite material structures with a large effective Kerr nonlinear coefficient. Through the dynamic adjustment of the frequency of the disk nanocavity, the group velocity is controlled between c/53.2 and c/15.1 with the pump light intensity increased from 0.41 MW/cm2 to 2.05 MW/cm2. Alternatively, through the dynamic adjustment of the propagation phase of the plasmonic waveguide, the group velocity is controlled between c/2.8 and c/14.8 with the pump light intensity increased from 5.88 MW/cm2 to 11.76 MW/cm2. The phase shift multiplication of the PIT effect is observed. Calculation results indicate that the entire structure is ultracompact and has a footprint of less than 0.8 μm2. An ultrafast responsive time in the order of 1 ps is reached due to the ultrafast carrier relaxation dynamics of graphene. All findings are comprehensively analyzed through finite-difference time-domain simulations and with a coupling-mode equation system. The results can serve as a reference for the design and fabrication of nanoscale integration photonic devices with low power consumption and ultrafast nonlinear responses.
Keywords:  slow light      plasmon-induced transparency (PIT)      graphene      plasmonic waveguide  
Received:  06 April 2020      Revised:  07 May 2020      Accepted manuscript online: 
PACS:  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  42.15.Eq (Optical system design)  
  42.65.Wi (Nonlinear waveguides)  
  81.05.ue (Graphene)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11647122 and 61705064) and the Natural Science Foundation of Hubei Province, China (Grant Nos. 2018CFB672 and 2018CFB773).
Corresponding Authors:  Bo-Yun Wang, Bo-Yun Wang     E-mail:  wangboyun913@126.com;yuhuaqing@126.com

Cite this article: 

Bo-Yun Wang(王波云), Yue-Hong Zhu(朱月红), Jing Zhang(张静), Qing-Dong Zeng(曾庆栋), Jun Du(杜君), Tao Wang(王涛), Hua-Qing Yu(余华清) An ultrafast and low-power slow light tuning mechanism for compact aperture-coupled disk resonators 2020 Chin. Phys. B 29 084211

[1] Boyd R W and Gauthier D J 2006 Nature 441 701
[2] Kekatpure R D, Barnard E S, Cai W and Brongersma M L 2010 Phys. Rev. Lett. 104 243902
[3] Qin M, Wang L L, Zhai X, Lin Q and Xia S X 2018 IEEE Photon. Techno. Lett. 30 1009
[4] Han X, Wang T, Li X M, Liu B, He Y and Tang J 2015 IEEE J. Lightwave Techno. 33 3083
[5] Zhang S, Genov D A, Wang Y, Liu M and Zhang X 2008 Phys. Rev. Lett. 101 047401
[6] Wang T, Zhang Y S, Hong Z and Han Z H 2014 Opt. Express 22 21529
[7] Jia W, Ren P W, Tian Y C and Fan C Z 2019 Chin. Phys. B 28 026102
[8] Yan X, Wang T, Xiao S, Liu T, Hou H, Cheng L and Jiang X 2017 Sci. Rep. 7 1
[9] Tian Y C, Jia W, Ren P W and Fan C Z 2018 Chin. Phys. B 27 124205
[10] Ling Y, Huang L, Hong W, Liu T, Luan J, Liu W, Lai J and Li H 2018 Nanoscale 10 19517
[11] Xiao S, Wang T, Liu T, Yan X, Li Z and Xu C 2018 Carbon 126 271
[12] Zhang B, Li H, Xu H, Zhao M, Xiong C, Liu C and Wu K 2019 Opt. Express 27 3598
[13] Liu C, Li H, Xu H, Zhao M, Xiong C, Zhang B and Wu K 2019 J. Phys. D:Appl. Phys. 52 405203
[14] Zhao W, Qi J, Lu Y, Wang R, Zhang Q, Xiong H, Zhang Y, Wu Q and Xu J 2019 Opt. Express 27 7373
[15] Xiao S, Wang T, Jiang X, Yan X, Cheng L, Wang B and Xu C 2017 J. Phys. D:Appl. Phys. 50 195101
[16] Xiao S, Wang T, Liu Y, Han X and Yan X 2017 Plasmonics 12 185
[17] Yan S, Zhu X, Frandsen L H, Xiao S, Mortensen N A, Dong J and Ding Y 2017 Nat. Commun. 8 14411
[18] Tang P, Li J, Du L, Liu Q, Peng Q, Zhao J, Zhu B, Li Z and Zhu L 2018 Opt. Express 26 30655
[19] Xiang Y L, Zhai X, Lin Q, Xia S X, Qin M and Wang L L 2018 IEEE Photon. Techno. Lett. 30 622
[20] Li H and Xu Y 2019 Opt. Mater. Express 9 2107
[21] Xiao X, Tan Y, Guo Q, Li J, Liang S, Xiao S, Zhong H, He M, Liu L, Luo J and Chen L 2020 Opt. Express 28 3136
[22] Li J, Chen Z, Yang H, Yi Z, Chen X, Yao W, Duan T, Wu P, Li G and Yi Y 2020 Nanomaterials 10 257
[23] Han X, Wang T, Li X, Xiao S and Zhu Y 2015 Opt. Express 23 31945
[24] Han X, Wang T, Li X, Liu B, He Y and Tang J 2015 J. Phys. D:Appl. Phys. 48 235102
[25] Wang B, Zeng Q, Xiao S, Xu C, Xiong L, Lv H, Du J and Yu H 2017 J. Phys. D:Appl. Phys. 50 455107
[26] Zhu Y, Hu X Y, Yang H and Gong Q H 2014 Sci. Rep. 4 3752
[27] Li H, Chen B, Qin M and Wang L 2020 Opt. Express 28 205
[28] Yang X Y, Hu X Y, Chai Z, Lu C C, Yang H and Gong Q H 2014 Appl. Phys. Lett. 104 221114
[29] Lu H, Liu X, Wang L, Gong Y and Mao D 2011 Opt. Express 19 2910
[30] Pu M, Yao N, Hu C, Xin X, Zhao Z, Wang C and Luo X 2010 Opt. Express 18 21030
[31] Zhu Y, Hu X Y, Yang H and Gong Q H 2014 Appl. Phys. Lett. 104 211108
[32] Hendry E, Hale P J, Moger J, Savchenko A K and Mikhailov S A 2010 Phys. Rev. Lett. 105 097401
[33] Zhang H, Virally S, Bao Q L, Ping L K, Massar S, Godbout N and Kockaert P 2012 Opt. Lett. 37 1856
[34] Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L and Ruoff R S 2009 Science 324 1312
[35] Suk J W, Kitt A, Magnuson CW, Hao Y, Ahmed S, An J, Swan A K, Goldberg B B and Ruoff R S 2011 ACS Nano 5 6916
[36] Lu H, Liu X and Mao D 2012 Phys. Rev. A 85 053803
[37] Wei W Y, Yu Y F and Zhang Z M 2018 Chin. Phys. B 27 034204
[38] Yang X, Yu M, Kwong D L and Wong C W 2010 IEEE J. Sel. Top. Quantum Electron. 16 288
[39] Yang X, Yu M, Kwong D L and Wong C W 2009 Phys. Rev. Lett. 102 173902
[40] Han X, Wang T, Wang B, Liu B, He Y and Zhu Y 2015 J. Appl. Phys. 117 103105
[41] Gu T, Petrone N, McMillan J F, Zande A, Yu M, Lo G Q, Kwong D L, Hone J and Wong C W 2012 Nat. Photon. 6 554
[42] Nikolaenko A E, Papasimakis N, Atmatzakis E, Luo Z, Shen Z X, Angelis F D, Boden S A, Fabrizio E D and Zheludev N I 2012 Appl. Phys. Lett. 100 181109
[43] Reckinger N, Vlad A, Melinte S, Colomer J F and Sarrazin M 2013 Appl. Phys. Lett. 102 211108
[44] Cen C, Chen Z, Xu D, Jiang L, Chen X, Yi Z, Wu P, Li G and Yi Y 2020 Nanomaterials 10 95
[45] Cen C, Zhang Y, Chen X, Yang H, Yi Z, Yao W, Tang Y, Yi Y, Wang J and Wu P 2020 Physica E 117 113840
[46] Li J, Chen X, Yi Z, Yang H, Tang Y, Yi Y, Yao W, Wang J and Yi Y 2020 Materials Today Energy 16 100390
[47] Qin F, Chen X, Yi Z, Yao W, Yang H, Tang Y, Yi Y, Li H and Yi Y 2020 Solar Energy Materials and Solar Cells 211 110535
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[5] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[6] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[7] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[8] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[9] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[10] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[11] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[12] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[13] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
[14] Light-modulated electron retroreflection and Klein tunneling in a graphene-based n-p-n junction
Xingfei Zhou(周兴飞), Ziying Wu(吴子瀛), Yuchen Bai(白宇晨), Qicheng Wang(王起程), Zhentao Zhu(朱震涛), Wei Yan(闫巍), and Yafang Xu(许亚芳). Chin. Phys. B, 2022, 31(4): 047301.
[15] TiS2-graphene heterostructures enabling polysulfide anchoring and fast electrocatalyst for lithium-sulfur batteries: A first-principles calculation
Wenyang Zhao(赵文阳), Li-Chun Xu(徐利春), Yuhong Guo(郭宇宏), Zhi Yang(杨致), Ruiping Liu(刘瑞萍), and Xiuyan Li(李秀燕). Chin. Phys. B, 2022, 31(4): 047101.
No Suggested Reading articles found!