ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
An ultrafast and low-power slow light tuning mechanism for compact aperture-coupled disk resonators |
Bo-Yun Wang(王波云)1, Yue-Hong Zhu(朱月红)1, Jing Zhang(张静)1, Qing-Dong Zeng(曾庆栋)1, Jun Du(杜君)1, Tao Wang(王涛)2, Hua-Qing Yu(余华清)1 |
1 School of Physics and Electronic-information Engineering, Hubei Engineering University, Xiaogan 432000, China; 2 Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China |
|
|
Abstract An ultrafast and low-power slow light tuning mechanism based on plasmon-induced transparency (PIT) for two disk cavities aperture-coupled to a metal-dielectric-metal plasmonic waveguide system is investigated numerically and analytically. The optical Kerr effect is enhanced by the local electromagnetic field of surface plasmon polaritons, slow light, and graphene-Ag composite material structures with a large effective Kerr nonlinear coefficient. Through the dynamic adjustment of the frequency of the disk nanocavity, the group velocity is controlled between c/53.2 and c/15.1 with the pump light intensity increased from 0.41 MW/cm2 to 2.05 MW/cm2. Alternatively, through the dynamic adjustment of the propagation phase of the plasmonic waveguide, the group velocity is controlled between c/2.8 and c/14.8 with the pump light intensity increased from 5.88 MW/cm2 to 11.76 MW/cm2. The phase shift multiplication of the PIT effect is observed. Calculation results indicate that the entire structure is ultracompact and has a footprint of less than 0.8 μm2. An ultrafast responsive time in the order of 1 ps is reached due to the ultrafast carrier relaxation dynamics of graphene. All findings are comprehensively analyzed through finite-difference time-domain simulations and with a coupling-mode equation system. The results can serve as a reference for the design and fabrication of nanoscale integration photonic devices with low power consumption and ultrafast nonlinear responses.
|
Received: 06 April 2020
Revised: 07 May 2020
Accepted manuscript online:
|
PACS:
|
42.50.Gy
|
(Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)
|
|
42.15.Eq
|
(Optical system design)
|
|
42.65.Wi
|
(Nonlinear waveguides)
|
|
81.05.ue
|
(Graphene)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11647122 and 61705064) and the Natural Science Foundation of Hubei Province, China (Grant Nos. 2018CFB672 and 2018CFB773). |
Corresponding Authors:
Bo-Yun Wang, Bo-Yun Wang
E-mail: wangboyun913@126.com;yuhuaqing@126.com
|
Cite this article:
Bo-Yun Wang(王波云), Yue-Hong Zhu(朱月红), Jing Zhang(张静), Qing-Dong Zeng(曾庆栋), Jun Du(杜君), Tao Wang(王涛), Hua-Qing Yu(余华清) An ultrafast and low-power slow light tuning mechanism for compact aperture-coupled disk resonators 2020 Chin. Phys. B 29 084211
|
[1] |
Boyd R W and Gauthier D J 2006 Nature 441 701
|
[2] |
Kekatpure R D, Barnard E S, Cai W and Brongersma M L 2010 Phys. Rev. Lett. 104 243902
|
[3] |
Qin M, Wang L L, Zhai X, Lin Q and Xia S X 2018 IEEE Photon. Techno. Lett. 30 1009
|
[4] |
Han X, Wang T, Li X M, Liu B, He Y and Tang J 2015 IEEE J. Lightwave Techno. 33 3083
|
[5] |
Zhang S, Genov D A, Wang Y, Liu M and Zhang X 2008 Phys. Rev. Lett. 101 047401
|
[6] |
Wang T, Zhang Y S, Hong Z and Han Z H 2014 Opt. Express 22 21529
|
[7] |
Jia W, Ren P W, Tian Y C and Fan C Z 2019 Chin. Phys. B 28 026102
|
[8] |
Yan X, Wang T, Xiao S, Liu T, Hou H, Cheng L and Jiang X 2017 Sci. Rep. 7 1
|
[9] |
Tian Y C, Jia W, Ren P W and Fan C Z 2018 Chin. Phys. B 27 124205
|
[10] |
Ling Y, Huang L, Hong W, Liu T, Luan J, Liu W, Lai J and Li H 2018 Nanoscale 10 19517
|
[11] |
Xiao S, Wang T, Liu T, Yan X, Li Z and Xu C 2018 Carbon 126 271
|
[12] |
Zhang B, Li H, Xu H, Zhao M, Xiong C, Liu C and Wu K 2019 Opt. Express 27 3598
|
[13] |
Liu C, Li H, Xu H, Zhao M, Xiong C, Zhang B and Wu K 2019 J. Phys. D:Appl. Phys. 52 405203
|
[14] |
Zhao W, Qi J, Lu Y, Wang R, Zhang Q, Xiong H, Zhang Y, Wu Q and Xu J 2019 Opt. Express 27 7373
|
[15] |
Xiao S, Wang T, Jiang X, Yan X, Cheng L, Wang B and Xu C 2017 J. Phys. D:Appl. Phys. 50 195101
|
[16] |
Xiao S, Wang T, Liu Y, Han X and Yan X 2017 Plasmonics 12 185
|
[17] |
Yan S, Zhu X, Frandsen L H, Xiao S, Mortensen N A, Dong J and Ding Y 2017 Nat. Commun. 8 14411
|
[18] |
Tang P, Li J, Du L, Liu Q, Peng Q, Zhao J, Zhu B, Li Z and Zhu L 2018 Opt. Express 26 30655
|
[19] |
Xiang Y L, Zhai X, Lin Q, Xia S X, Qin M and Wang L L 2018 IEEE Photon. Techno. Lett. 30 622
|
[20] |
Li H and Xu Y 2019 Opt. Mater. Express 9 2107
|
[21] |
Xiao X, Tan Y, Guo Q, Li J, Liang S, Xiao S, Zhong H, He M, Liu L, Luo J and Chen L 2020 Opt. Express 28 3136
|
[22] |
Li J, Chen Z, Yang H, Yi Z, Chen X, Yao W, Duan T, Wu P, Li G and Yi Y 2020 Nanomaterials 10 257
|
[23] |
Han X, Wang T, Li X, Xiao S and Zhu Y 2015 Opt. Express 23 31945
|
[24] |
Han X, Wang T, Li X, Liu B, He Y and Tang J 2015 J. Phys. D:Appl. Phys. 48 235102
|
[25] |
Wang B, Zeng Q, Xiao S, Xu C, Xiong L, Lv H, Du J and Yu H 2017 J. Phys. D:Appl. Phys. 50 455107
|
[26] |
Zhu Y, Hu X Y, Yang H and Gong Q H 2014 Sci. Rep. 4 3752
|
[27] |
Li H, Chen B, Qin M and Wang L 2020 Opt. Express 28 205
|
[28] |
Yang X Y, Hu X Y, Chai Z, Lu C C, Yang H and Gong Q H 2014 Appl. Phys. Lett. 104 221114
|
[29] |
Lu H, Liu X, Wang L, Gong Y and Mao D 2011 Opt. Express 19 2910
|
[30] |
Pu M, Yao N, Hu C, Xin X, Zhao Z, Wang C and Luo X 2010 Opt. Express 18 21030
|
[31] |
Zhu Y, Hu X Y, Yang H and Gong Q H 2014 Appl. Phys. Lett. 104 211108
|
[32] |
Hendry E, Hale P J, Moger J, Savchenko A K and Mikhailov S A 2010 Phys. Rev. Lett. 105 097401
|
[33] |
Zhang H, Virally S, Bao Q L, Ping L K, Massar S, Godbout N and Kockaert P 2012 Opt. Lett. 37 1856
|
[34] |
Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L and Ruoff R S 2009 Science 324 1312
|
[35] |
Suk J W, Kitt A, Magnuson CW, Hao Y, Ahmed S, An J, Swan A K, Goldberg B B and Ruoff R S 2011 ACS Nano 5 6916
|
[36] |
Lu H, Liu X and Mao D 2012 Phys. Rev. A 85 053803
|
[37] |
Wei W Y, Yu Y F and Zhang Z M 2018 Chin. Phys. B 27 034204
|
[38] |
Yang X, Yu M, Kwong D L and Wong C W 2010 IEEE J. Sel. Top. Quantum Electron. 16 288
|
[39] |
Yang X, Yu M, Kwong D L and Wong C W 2009 Phys. Rev. Lett. 102 173902
|
[40] |
Han X, Wang T, Wang B, Liu B, He Y and Zhu Y 2015 J. Appl. Phys. 117 103105
|
[41] |
Gu T, Petrone N, McMillan J F, Zande A, Yu M, Lo G Q, Kwong D L, Hone J and Wong C W 2012 Nat. Photon. 6 554
|
[42] |
Nikolaenko A E, Papasimakis N, Atmatzakis E, Luo Z, Shen Z X, Angelis F D, Boden S A, Fabrizio E D and Zheludev N I 2012 Appl. Phys. Lett. 100 181109
|
[43] |
Reckinger N, Vlad A, Melinte S, Colomer J F and Sarrazin M 2013 Appl. Phys. Lett. 102 211108
|
[44] |
Cen C, Chen Z, Xu D, Jiang L, Chen X, Yi Z, Wu P, Li G and Yi Y 2020 Nanomaterials 10 95
|
[45] |
Cen C, Zhang Y, Chen X, Yang H, Yi Z, Yao W, Tang Y, Yi Y, Wang J and Wu P 2020 Physica E 117 113840
|
[46] |
Li J, Chen X, Yi Z, Yang H, Tang Y, Yi Y, Yao W, Wang J and Yi Y 2020 Materials Today Energy 16 100390
|
[47] |
Qin F, Chen X, Yi Z, Yao W, Yang H, Tang Y, Yi Y, Li H and Yi Y 2020 Solar Energy Materials and Solar Cells 211 110535
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|