Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(3): 037801    DOI: 10.1088/1674-1056/ab5fc2
REVIEW Prev   Next  

Graphene's photonic and optoelectronic properties-A review

A J Wirth-Lima1, P P Alves-Sousa2, W Bezerra-Fraga1,2
1 Department of Physics, Federal Institute of Education, Science and Technology of Ceará Campus Sobral, Ceará, Brazil;
2 Postgraduate Program in Electrical Engineering and Computing Federal University of Ceará(U. F. C. ) Sobral, Ceará, Brazil
Abstract  Due to its remarkable electrical and optical properties, graphene continues to receive more and more attention from researchers around the world. An excellent advantage of graphene is the possibility of controlling its charge density, and consequently, the management of its conductivity and dielectric constant, among other parameters. It is noteworthy that the control of these properties enables the obtaining of new optical/electronic devices, which would not exist based on conventional materials. However, to work in this area of science, it is necessary to have a thorough knowledge regarding the electrical/optical properties of graphene. In this review paper, we show these graphene properties very well detailed.
Keywords:  absorbance      conductivity      dielecric constant      dispersion relation  
Received:  18 October 2019      Revised:  27 November 2019      Accepted manuscript online: 
PACS:  78.20.-e (Optical properties of bulk materials and thin films)  
  78.20.-e (Optical properties of bulk materials and thin films) (Applications of density-functional theory (e.g., to electronic structure and stability; defect formation; dielectric properties, susceptibilities; viscoelastic coefficients; Rydberg transition frequencies))  
  11.55.Fv (Dispersion relations)  
Fund: Project partly sponsored by the Cearense Foundation for Scientific and Technological Development Support (FUNCAP) and National Council for Scientific and Technological Development (CNPq).
Corresponding Authors:  A J Wirth-Lima     E-mail:

Cite this article: 

A J Wirth-Lima, P P Alves-Sousa, W Bezerra-Fraga Graphene's photonic and optoelectronic properties-A review 2020 Chin. Phys. B 29 037801

[1] Zhou Y, Zhang M, Guo Z, Miao L, Han S T, Wang Z, Zhang X, Zhang H and Peng Z 2017 Mater. Horiz. 4 997
[2] Wirth-Lima A J, Silva M G and Sombra A S B 2018 Chin. Phys. B 27 023201
[3] Shi S, Li Z, Sang D K, Xiang Y, Li J, Zhang S and Zhang H 2018 J. Mater. Chem. C 6 1291
[4] Wirth-Lima A J and Sombra A S B 2012 Journal of Optics 14 105402
[5] Jin C, Lin F, Suenaga K and Iijima S 2009 Phys. Rev. Lett. 102 195505
[6] Liu H, Neal A T, Luo Z, Z Xu X and Tománek D Ye P D 2014 ACS Nano 8 4033
[7] Molle A, Goldberger J, Houssa M, Xu Y, Zhang S C and Buckled D 2017 Nat. Materials 16 163
[8] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V and Kis A 2017 Nat. Rev. Mater. 2 17033
[9] Phillips c, Gilburd l, Xiaoji G X and Walker G C 2019 J. Phys. Chem. Lett. 10 4851
[10] Melentev G A, Shalygin V A, Vorobjev L E, et al. 2016 J. Appl. Phys. 119 093104
[11] Greffet J J, Carminati R, Joulain K, Mulet J P, Mainguy S and Chen Y 2002 Nature 416 61
[12] Širmulis E, Šilėnas A, Požela K, Požela J and Jucienė V 2014 Appl. Phys. A 115 199
[13] Melentev G A, Shalygin V A, Firsov D A, Vinnichenko M Y and Vorobjev L E 2017 IOP J. Phys.: Conf. Ser. 917 062038
[14] Maier S A 2007 Plasmonics: Fundamentals and Applications (Berlin: Springer) p. 223
[15] Yu P Y and Cardona M 2010 Fundamentals of Semiconductors (Berlin: Springer)
[16] Holm R T, Gibson J W and Palik E D 1977 J. Appl. Phys. 48 212
[17] Chandrasekhar H R and Ramdas A K 1980 Phys. Rev. B 21 1511
[18] Yu E, Melentev G A, Shalygin V A and Suihkonen S 2017 J. Phys.: Conf. Ser. 816 012004
[19] Lagois J and Fischer B 1976 Phys. Rev. Lett. 36 680
[20] Yang F, Sambles J R and Bradberry G W 1990 Phys. Rev. Lett. 64 559
[21] Cramer T Wanner A and Phys P 1997 Stat Solidi A 164 R5
[22] Agranovich V, Benisty H and Weisbuch C 1997 Solid State Commun. 102 631
[23] Ha D T, Thuy D T, Hoa T, Van T T T and Viet N A 2017 J. Phys.: Conf. Ser. 865 012007
[24] Kaliteevski M A, Brand S, Abram R A, Kavokin A and Dang L S 2007 Phys. Rev. B 75 1
[25] Lambright S, Butaeva E, Razgoniaeva N, et al. 2013 ACS Nano 8 352
[26] Ming T, Chen H, Jiang R, Li Q and Wang J 2012 J. Phys. Chem. Lett. 3 191
[27] Wang H, Liu T, Huang Y, et al. 2014 Sci. Rep. 4 7087
[28] Zhang W, Govorov A O and Bryant G W 2006 Phys. Rev. Lett. 97 146804
[29] Boca A, Miller R, Birnbaum K M, Boozer A D, McKeever J and Kimble H J 2004 Phys. Rev. Lett. 93 233603
[30] Antoine-Vincent N, Natali F, Byrne D, et al. 2003 Phys. Rev. B 68 153313
[31] Médard F, Zuniga-Perez J, Disseix P, et al. 2009 Phys. Rev. B 79 125302
[32] Achermann M 2010 J. Phys. Chem. Lett. 1 2837
[33] Derkachova A, Kolwas K and Demchenko I 2016 Plasmonics 11 941
[34] Johnson P and Christy R 1972 Phys. Rev. B 6 4370
[35] Derkachova A and Kolwas K 2007 Eur. Phys. J-Spec Top. 144 93
[36] Fang Z, Wang Y, Liu Z, Schlather A, Ajayan P M, Koppens F H L, Nordlander P and Halas N J 2012 ACS Nano 6 10222
[37] Yan H, Li X, Chandra B, Tulevski G, Wu Y, Zhu F, Avouris W and Xia P F 2012 Nat. Nanotechnol. 7 330
[38] Nikitin A Y, Guinea F, Garcia-Vidal F J and Martin-Moreno L 2012 Phys. Rev. B 85 081405(R)
[39] Liu J T, Liu N H, Li J, Li X J and Huang J H 2012 Appl. Phys. Lett. 101 052104
[40] Thongrattanasiri S, Koppens F H L and de Abajo J G 2012 Phys. Rev. Lett. 108 047401
[41] Zhang L, Fu X, Lei M, Chen J, Yang J, Peng Z and Tang W 2014 Chin. Phys. B 23 038101
[42] Chen C, Qiao H, Lin S, et al. 2015 Sci. Rep. 5 11830
[43] Mak K F, Sfeir M Y, Wu Y C, Lui H, Misewich J A and Heinz T F 2008 Phys. Rev. Lett. 101 196405
[44] Falkovsky L A and Pershogub S S 2007 Phys. Rev. B 76 153410
[45] Luo X, Qiu T, Lu W and Ni Z 2013 Elsevier-Materials Science and Engineering: R: Reports 74 351
[46] Wang B, Zhang X, Yuan X and Teng J 2012 Appl. Phys. Lett. 100 131111
[47] Christensen J, Manjavacas A, Thongrattanasiri S, Koppens F H L and de Abajo F J G 2012 ACS Nano 6 431
[48] Gusynin V P, Sharapov S G and Carbotte J P 2007 Phys. Rev. B 75 165407
[49] Gan C H, Chu H S and Li E P 2012 Phys. Rev. B 85 125431
[50] Zhan T, Shi X, Dai Y, Liu X and Zi J 2013 J. Phys. Condens. Matter 10 215301
[51] Shao Z G, Ye X S, Yang L and Wang C L 2013 J. Appl. Phys. 114 093712
[52] Jablan M, Buljan H and Soljačić M 2009 Phys. Rev. B 80 245435
[53] Cheng Z, Tsang H K, Wang X, Wong C Y, Chen X K, Shi Z and Xu J B arXiv: 1211.5946v1
[54] Vakil A and Engheta N 2011 arXiv:1101.3585v1
[55] Mikhailov S A and Ziegler K 2007 Phys. Rev. Lett. 99 016803 2013
[56] Bludov Y V, Ferreira A, Peres N M R and Vasilevskiy M I 2013 International Journal of Modern Physics B 27 1341001
[57] Dean C R, Young A F, Meric I Lee C Wang L, et al. 2010 Nat. Nanotechnol. 5 722
[58] Laturia A, Van de Put M L and Vandenberghe W G 2018 2D Mater. Appl. 2 6
[59] Murray W A and Barnes W L 2007 Adv. Mater. 19 3771
[60] Koppens F H L, Chang D E and García de Abajo F J 2011 Nano Lett. 11 3370
[61] Bao Q Loh K P 2012 ACS Nano 6 3677
[62] Jarillo-Herrero T and Palacios T 2011 IEEE Electron Device Lett. 32 1209
[63] Wang J Ma F and Sun M 2017 RSC Adv. 7 16801
[64] Xue J, Sanchez-Yamagishi J, Bulmash D, et al. 2011 Nat. Mater. 10 282
[65] Young A F, Dean C R, Meric I, et al. 2012 Phys. Rev. B 85 235458
[66] Watanabe K, Taniguchi T and Kanda H 2004 Nat. Mater. 36 404
[67] Kubota Y, Watanabe K, Tsuda O and Taniguchi T 1913 Science 38 932
[68] Golberg D, Bando Y, Huang Y, Terao T, Mitome M, Tang C and Zhi C 2010 ACS Nano 4 2979
[69] Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P and Stormer H L 2008 Solid State Commun. 146 351
[70] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
[71] Cao H, Yu Q, Colby R, Pandey D, Park C S, Lian J, Zemlyanov D, Childres I, Drachev V, Stach E A, Hussain M, Li H, Pei S S and Chen Y P J 2010 Appl. Phys. 107 044310
[72] Cao H, Yu Q, Jauregui L A, Tian J, Wu W, Liu Z, Jalilian R, Benjamin D K, Jiang Z, Bao J, Pei S S and Chen Y P 2010 Appl. Phys. Lett. 96 122106
[73] Murali R, Yang Y, Brenner K, Beck T and Meindl J D 2009 Appl. Phys. Lett. 94 243114
[74] Matthes L, Pulci O and Bechstedt F 2014 New J. Phys. 16 105007
[75] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[76] Liu Y, Shivananju B N, Wang Y, et al. 2017 ACS Appl. Mater. Interfaces 9 36137
[77] Yunzheng W, Feng Z, Xian T, et al. 2018 Laser & Photon. Rev. 12 1800016
[78] Wang Y, Huang W, Wang C, et al. 2019 Laser & Photon. Rev. 13 1800313
[79] Zhang M, Wu Q, Zhang F, Chen L, Jin X, Hu Y, Zheng Z and Zhang H 2019 7 1800224
[80] He J, Tao L, Zhang H, Zho B and Li J 2019 Nanoscale 11 2577
[81] Manderson C A, McLiesh H, Curvello R, Tabor R F, Manolios J and Garnier G 2019 Sci. Rep. 9 11221
[82] Tao W, Kong N, Ji X, et al. 2019 Chem. Soc. Rev. 48 2891
[83] Kang Y Najmaei S Liu Z, et al. 2014 Adv. Mater. 26 6467
[84] Fang Z, Wang Y, Schlather A E, et al. 2014 Nano Lett. 14 299
[85] Fang Z, Thongrattanasiri S, Schlather A, et al. 2013 ACS Nano 7 2388
[86] Fang Z, Liu Z, Wang Y, Ajayan P M, Nordlander P and Halas N J 2012 Nano Lett. 12 3808
[87] Li Z, Qiao H, Ren X, et al. 2018 Adv. Funct. Mater. 28 1705237
[88] Klein C, Cohen-Elias D and Sarusi G 2018 Heliyon 4 12
[89] Suhail A, Pan G, Jenkins D and Islam K 2018 Carbon 129 520
[90] Kamat P V 2008 J. Phys. Chem. C 112 18737
[91] Guo C X, Yang H B, Sheng Z M, Lu Z S, Song Q L and Li C M 2010 Angew. Chem. Int. Ed. 49 3014
[92] Gan C H, Phua W K, Akimov Y A and Bai P 2010 Appl. Phys. Lett. 97 092115
[93] Zhang Y, Lim C K, Dai Z, Yu G, Haus J W, Zhang H and Prasad P N 2019 Phys. Rep. 795 1
[94] Vasko F T and Zozoulenko I V 2010 Appl. Phys. Lett. 97 092115
[95] Craciun M F, Russo S, Yamamoto M and Tarucha S 2011 Nano Today 6 42
[96] Goniszewski1 S, Adabi M, Shaforost O, Hanham S M, Hao L and Klein N 2016 Sci. Rep. 6 22858
[97] Nistor R A, Kuroda M A, Maarouf A A and Martyna G J 2012 Phys. Rev. B 86 041409
[98] Moser J, Verdaguer A, Jimenez D, Barreiro A and Bachtold A 2008 Appl. Phys. Lett. 92 123507
[99] Lafkioti M, Krauss B, Lohmann T, et al. 2010 Nano Lett. 10 1149
[100] Kong J, Franklin N R, Zhou C, et al. 2000 Science 287 622
[101] Pince E and Kocabas C 2010 Appl. Phys. Lett. 97 173106
[102] Das Sarma S, Adam S, Hwang E H and Rossi E 2011 Rev. Mod. Phys. 83 407
[103] Xia J, Chen F, Li J and Tao N 2009 Nat. Nanotechnol. 4 505
[104] Arya R K and Bala T S 2014 1st International Conference on Electrical Information and Communication Technology IEEE
[105] Rahman M T, Roy A K, Bhuiyan H M A R, Islam M T and Bhuiyan A G 2014 1st International Conference on Electrical Information and Communication Technology IEEE
[106] Thiele S A, Schaefer J A and Schwierz 2010 J. Appl. Phys. 107 094505
[107] Tsukagoshi K, Miyazaki H, Li S L, Kumatani A, Hiura H and Kanda A 2010 Semicond. Sci. Technol. 25 034008
[108] Miyazaki H, Li S Kanda A and Tsukagoshi K 2010 Semicond. Sci. Technol. 25 034008
[109] Qi Y, Hector L G J Ooi N and Adams J B 2005 Surf. Sci. 581 155
[110] Ziovannetti G, Khomyakov P A, Brocks G, Karpan V M, van den Brink J and Kelly J 2008 Phys. Rev. Lett. 101 026803
[111] Khomyakov P A, Giovannetti G, Rusu P C, Brocks G, Zan den Brink J and Kelly P J 2009 Phys. Rev. B 79 195425
[112] Xu F, Das S, Gong Y, Liu Q, Chien H C, Chiu H Y, Wu J and Hui R 2015 Appl. Phys. Lett. 106 031109
[113] Abhilash T S, De Alba R, Zhelev N, Craigheadb H G and Parpia J M 2015 Nanoscale 7 14109
[114] Kayyalha M and Chen Y P 2015 Appl. Phys. Lett. 107 113101
[115] Bokdam M, Khomyakov P A, Brocks G, Zhong Z and Kelly P J 2011 Nano Lett. 11 4631
[116] Zhang Y B, Brar V W, Wang F, Girit C, Yayon Y, Panlasigui M, Zettl A and Crommie M F 2008 Nat. Phys. 4 627
[117] Zhang Y B, Brar V W, Girit C, Zettl A and Crommie M F 2009 Nat. Phys. 5 722
[118] Kim L E and K S Kim P 2009 Nano Lett. 9 3430
[119] Decker R, Wang Y, Brar V W, Regan W, Tsai H Z, Wu Q, Gannett W, Zett A and Crommie M F 2011 Nano Lett. 11 2291
[120] Bagus P S, Staemmler V and Wöll C 2002 Phys. Rev. Lett. 89 096104
[121] Chaves F A, Jiménez D Cummings A W and Roch S 2014 J. Appl. Phys. 115 164513
[122] Champlain J G 2011 J. Appl. Phys. 109 084515
[123] Kim B K, Jeon E K, Kim J J and Lee J O 2010 J. Nanomater. Volume 2010 575472
[124] Yu Y J, Zhao Y, Ryu S Brus L E, Kim K S and Kim P 2009 Nano Lett. 9 3430
[125] Nanda B S and Puttaswamy P S 2019 Int. J. Electr. Comput. Eng. 9 4826
[126] Wang H Hsu A Kong J Antoniadis D A and Palacios T 2011 IEEE Transactions on Electron Devices 58 1523
[127] Gajarushi A S, Wasim M, Nabi R, Kancharlapalli S, Rao V R, Rajaraman V, Subramaniam C and Shanmugam 2019 M Mater. Horiz. 6 743
[128] A. Wirth Lima Jr. and Sombra A S B 2017 Opt. Quant. Electron. 49 388
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[4] Enhanced topological superconductivity in an asymmetrical planar Josephson junction
Erhu Zhang(张二虎) and Yu Zhang(张钰). Chin. Phys. B, 2023, 32(4): 040307.
[5] Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures
Yuan Liu(刘源), Zhongran Liu(刘中然), Meng Zhang(张蒙), Yanqiu Sun(孙艳秋), He Tian(田鹤), and Yanwu Xie(谢燕武). Chin. Phys. B, 2023, 32(3): 037305.
[6] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[7] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[8] Superconductivity and unconventional density waves in vanadium-based kagome materials AV3Sb5
Hui Chen(陈辉), Bin Hu(胡彬), Yuhan Ye(耶郁晗), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097405.
[9] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
[10] Evolution of electrical conductivity and semiconductor to metal transition of iron oxides at extreme conditions
Yukai Zhuang(庄毓凯) and Qingyang Hu(胡清扬). Chin. Phys. B, 2022, 31(8): 089101.
[11] Low-temperature heat transport of the zigzag spin-chain compound SrEr2O4
Liguo Chu(褚利国), Shuangkui Guang(光双魁), Haidong Zhou(周海东), Hong Zhu(朱弘), and Xuefeng Sun(孙学峰). Chin. Phys. B, 2022, 31(8): 087505.
[12] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
[13] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[14] Surface electron doping induced double gap opening in Td-WTe2
Qi-Yuan Li(李启远), Yang-Yang Lv(吕洋洋), Yong-Jie Xu(徐永杰), Li Zhu(朱立), Wei-Min Zhao(赵伟民), Yanbin Chen(陈延彬), and Shao-Chun Li(李绍春). Chin. Phys. B, 2022, 31(6): 066802.
[15] Vacuum current-carrying tribological behavior of MoS2-Ti films with different conductivities
Lu-Lu Pei(裴露露), Peng-Fei Ju(鞠鹏飞), Li Ji(吉利), Hong-Xuan Li(李红轩),Xiao-Hong Liu(刘晓红), Hui-Di Zhou(周惠娣), and Jian-Min Chen(陈建敏). Chin. Phys. B, 2022, 31(6): 066201.
No Suggested Reading articles found!