|
|
Graphene's photonic and optoelectronic properties-A review |
A J Wirth-Lima1, P P Alves-Sousa2, W Bezerra-Fraga1,2 |
1 Department of Physics, Federal Institute of Education, Science and Technology of Ceará Campus Sobral, Ceará, Brazil; 2 Postgraduate Program in Electrical Engineering and Computing Federal University of Ceará(U. F. C. ) Sobral, Ceará, Brazil |
|
|
Abstract Due to its remarkable electrical and optical properties, graphene continues to receive more and more attention from researchers around the world. An excellent advantage of graphene is the possibility of controlling its charge density, and consequently, the management of its conductivity and dielectric constant, among other parameters. It is noteworthy that the control of these properties enables the obtaining of new optical/electronic devices, which would not exist based on conventional materials. However, to work in this area of science, it is necessary to have a thorough knowledge regarding the electrical/optical properties of graphene. In this review paper, we show these graphene properties very well detailed.
|
Received: 18 October 2019
Revised: 27 November 2019
Accepted manuscript online:
|
PACS:
|
78.20.-e
|
(Optical properties of bulk materials and thin films)
|
|
78.20.-e
|
(Optical properties of bulk materials and thin films)
|
|
31.15.es
|
(Applications of density-functional theory (e.g., to electronic structure and stability; defect formation; dielectric properties, susceptibilities; viscoelastic coefficients; Rydberg transition frequencies))
|
|
11.55.Fv
|
(Dispersion relations)
|
|
Fund: Project partly sponsored by the Cearense Foundation for Scientific and Technological Development Support (FUNCAP) and National Council for Scientific and Technological Development (CNPq). |
Corresponding Authors:
A J Wirth-Lima
E-mail: awljeng@gmail.com
|
Cite this article:
A J Wirth-Lima, P P Alves-Sousa, W Bezerra-Fraga Graphene's photonic and optoelectronic properties-A review 2020 Chin. Phys. B 29 037801
|
[1] |
Zhou Y, Zhang M, Guo Z, Miao L, Han S T, Wang Z, Zhang X, Zhang H and Peng Z 2017 Mater. Horiz. 4 997
|
[2] |
Wirth-Lima A J, Silva M G and Sombra A S B 2018 Chin. Phys. B 27 023201
|
[3] |
Shi S, Li Z, Sang D K, Xiang Y, Li J, Zhang S and Zhang H 2018 J. Mater. Chem. C 6 1291
|
[4] |
Wirth-Lima A J and Sombra A S B 2012 Journal of Optics 14 105402
|
[5] |
Jin C, Lin F, Suenaga K and Iijima S 2009 Phys. Rev. Lett. 102 195505
|
[6] |
Liu H, Neal A T, Luo Z, Z Xu X and Tománek D Ye P D 2014 ACS Nano 8 4033
|
[7] |
Molle A, Goldberger J, Houssa M, Xu Y, Zhang S C and Buckled D 2017 Nat. Materials 16 163
|
[8] |
Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V and Kis A 2017 Nat. Rev. Mater. 2 17033
|
[9] |
Phillips c, Gilburd l, Xiaoji G X and Walker G C 2019 J. Phys. Chem. Lett. 10 4851
|
[10] |
Melentev G A, Shalygin V A, Vorobjev L E, et al. 2016 J. Appl. Phys. 119 093104
|
[11] |
Greffet J J, Carminati R, Joulain K, Mulet J P, Mainguy S and Chen Y 2002 Nature 416 61
|
[12] |
Širmulis E, Šilėnas A, Požela K, Požela J and Jucienė V 2014 Appl. Phys. A 115 199
|
[13] |
Melentev G A, Shalygin V A, Firsov D A, Vinnichenko M Y and Vorobjev L E 2017 IOP J. Phys.: Conf. Ser. 917 062038
|
[14] |
Maier S A 2007 Plasmonics: Fundamentals and Applications (Berlin: Springer) p. 223
|
[15] |
Yu P Y and Cardona M 2010 Fundamentals of Semiconductors (Berlin: Springer)
|
[16] |
Holm R T, Gibson J W and Palik E D 1977 J. Appl. Phys. 48 212
|
[17] |
Chandrasekhar H R and Ramdas A K 1980 Phys. Rev. B 21 1511
|
[18] |
Yu E, Melentev G A, Shalygin V A and Suihkonen S 2017 J. Phys.: Conf. Ser. 816 012004
|
[19] |
Lagois J and Fischer B 1976 Phys. Rev. Lett. 36 680
|
[20] |
Yang F, Sambles J R and Bradberry G W 1990 Phys. Rev. Lett. 64 559
|
[21] |
Cramer T Wanner A and Phys P 1997 Stat Solidi A 164 R5
|
[22] |
Agranovich V, Benisty H and Weisbuch C 1997 Solid State Commun. 102 631
|
[23] |
Ha D T, Thuy D T, Hoa T, Van T T T and Viet N A 2017 J. Phys.: Conf. Ser. 865 012007
|
[24] |
Kaliteevski M A, Brand S, Abram R A, Kavokin A and Dang L S 2007 Phys. Rev. B 75 1
|
[25] |
Lambright S, Butaeva E, Razgoniaeva N, et al. 2013 ACS Nano 8 352
|
[26] |
Ming T, Chen H, Jiang R, Li Q and Wang J 2012 J. Phys. Chem. Lett. 3 191
|
[27] |
Wang H, Liu T, Huang Y, et al. 2014 Sci. Rep. 4 7087
|
[28] |
Zhang W, Govorov A O and Bryant G W 2006 Phys. Rev. Lett. 97 146804
|
[29] |
Boca A, Miller R, Birnbaum K M, Boozer A D, McKeever J and Kimble H J 2004 Phys. Rev. Lett. 93 233603
|
[30] |
Antoine-Vincent N, Natali F, Byrne D, et al. 2003 Phys. Rev. B 68 153313
|
[31] |
Médard F, Zuniga-Perez J, Disseix P, et al. 2009 Phys. Rev. B 79 125302
|
[32] |
Achermann M 2010 J. Phys. Chem. Lett. 1 2837
|
[33] |
Derkachova A, Kolwas K and Demchenko I 2016 Plasmonics 11 941
|
[34] |
Johnson P and Christy R 1972 Phys. Rev. B 6 4370
|
[35] |
Derkachova A and Kolwas K 2007 Eur. Phys. J-Spec Top. 144 93
|
[36] |
Fang Z, Wang Y, Liu Z, Schlather A, Ajayan P M, Koppens F H L, Nordlander P and Halas N J 2012 ACS Nano 6 10222
|
[37] |
Yan H, Li X, Chandra B, Tulevski G, Wu Y, Zhu F, Avouris W and Xia P F 2012 Nat. Nanotechnol. 7 330
|
[38] |
Nikitin A Y, Guinea F, Garcia-Vidal F J and Martin-Moreno L 2012 Phys. Rev. B 85 081405(R)
|
[39] |
Liu J T, Liu N H, Li J, Li X J and Huang J H 2012 Appl. Phys. Lett. 101 052104
|
[40] |
Thongrattanasiri S, Koppens F H L and de Abajo J G 2012 Phys. Rev. Lett. 108 047401
|
[41] |
Zhang L, Fu X, Lei M, Chen J, Yang J, Peng Z and Tang W 2014 Chin. Phys. B 23 038101
|
[42] |
Chen C, Qiao H, Lin S, et al. 2015 Sci. Rep. 5 11830
|
[43] |
Mak K F, Sfeir M Y, Wu Y C, Lui H, Misewich J A and Heinz T F 2008 Phys. Rev. Lett. 101 196405
|
[44] |
Falkovsky L A and Pershogub S S 2007 Phys. Rev. B 76 153410
|
[45] |
Luo X, Qiu T, Lu W and Ni Z 2013 Elsevier-Materials Science and Engineering: R: Reports 74 351
|
[46] |
Wang B, Zhang X, Yuan X and Teng J 2012 Appl. Phys. Lett. 100 131111
|
[47] |
Christensen J, Manjavacas A, Thongrattanasiri S, Koppens F H L and de Abajo F J G 2012 ACS Nano 6 431
|
[48] |
Gusynin V P, Sharapov S G and Carbotte J P 2007 Phys. Rev. B 75 165407
|
[49] |
Gan C H, Chu H S and Li E P 2012 Phys. Rev. B 85 125431
|
[50] |
Zhan T, Shi X, Dai Y, Liu X and Zi J 2013 J. Phys. Condens. Matter 10 215301
|
[51] |
Shao Z G, Ye X S, Yang L and Wang C L 2013 J. Appl. Phys. 114 093712
|
[52] |
Jablan M, Buljan H and Soljačić M 2009 Phys. Rev. B 80 245435
|
[53] |
Cheng Z, Tsang H K, Wang X, Wong C Y, Chen X K, Shi Z and Xu J B arXiv: 1211.5946v1
|
[54] |
Vakil A and Engheta N 2011 arXiv:1101.3585v1
|
[55] |
Mikhailov S A and Ziegler K 2007 Phys. Rev. Lett. 99 016803 2013
|
[56] |
Bludov Y V, Ferreira A, Peres N M R and Vasilevskiy M I 2013 International Journal of Modern Physics B 27 1341001
|
[57] |
Dean C R, Young A F, Meric I Lee C Wang L, et al. 2010 Nat. Nanotechnol. 5 722
|
[58] |
Laturia A, Van de Put M L and Vandenberghe W G 2018 2D Mater. Appl. 2 6
|
[59] |
Murray W A and Barnes W L 2007 Adv. Mater. 19 3771
|
[60] |
Koppens F H L, Chang D E and García de Abajo F J 2011 Nano Lett. 11 3370
|
[61] |
Bao Q Loh K P 2012 ACS Nano 6 3677
|
[62] |
Jarillo-Herrero T and Palacios T 2011 IEEE Electron Device Lett. 32 1209
|
[63] |
Wang J Ma F and Sun M 2017 RSC Adv. 7 16801
|
[64] |
Xue J, Sanchez-Yamagishi J, Bulmash D, et al. 2011 Nat. Mater. 10 282
|
[65] |
Young A F, Dean C R, Meric I, et al. 2012 Phys. Rev. B 85 235458
|
[66] |
Watanabe K, Taniguchi T and Kanda H 2004 Nat. Mater. 36 404
|
[67] |
Kubota Y, Watanabe K, Tsuda O and Taniguchi T 1913 Science 38 932
|
[68] |
Golberg D, Bando Y, Huang Y, Terao T, Mitome M, Tang C and Zhi C 2010 ACS Nano 4 2979
|
[69] |
Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P and Stormer H L 2008 Solid State Commun. 146 351
|
[70] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
|
[71] |
Cao H, Yu Q, Colby R, Pandey D, Park C S, Lian J, Zemlyanov D, Childres I, Drachev V, Stach E A, Hussain M, Li H, Pei S S and Chen Y P J 2010 Appl. Phys. 107 044310
|
[72] |
Cao H, Yu Q, Jauregui L A, Tian J, Wu W, Liu Z, Jalilian R, Benjamin D K, Jiang Z, Bao J, Pei S S and Chen Y P 2010 Appl. Phys. Lett. 96 122106
|
[73] |
Murali R, Yang Y, Brenner K, Beck T and Meindl J D 2009 Appl. Phys. Lett. 94 243114
|
[74] |
Matthes L, Pulci O and Bechstedt F 2014 New J. Phys. 16 105007
|
[75] |
Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
|
[76] |
Liu Y, Shivananju B N, Wang Y, et al. 2017 ACS Appl. Mater. Interfaces 9 36137
|
[77] |
Yunzheng W, Feng Z, Xian T, et al. 2018 Laser & Photon. Rev. 12 1800016
|
[78] |
Wang Y, Huang W, Wang C, et al. 2019 Laser & Photon. Rev. 13 1800313
|
[79] |
Zhang M, Wu Q, Zhang F, Chen L, Jin X, Hu Y, Zheng Z and Zhang H 2019 7 1800224
|
[80] |
He J, Tao L, Zhang H, Zho B and Li J 2019 Nanoscale 11 2577
|
[81] |
Manderson C A, McLiesh H, Curvello R, Tabor R F, Manolios J and Garnier G 2019 Sci. Rep. 9 11221
|
[82] |
Tao W, Kong N, Ji X, et al. 2019 Chem. Soc. Rev. 48 2891
|
[83] |
Kang Y Najmaei S Liu Z, et al. 2014 Adv. Mater. 26 6467
|
[84] |
Fang Z, Wang Y, Schlather A E, et al. 2014 Nano Lett. 14 299
|
[85] |
Fang Z, Thongrattanasiri S, Schlather A, et al. 2013 ACS Nano 7 2388
|
[86] |
Fang Z, Liu Z, Wang Y, Ajayan P M, Nordlander P and Halas N J 2012 Nano Lett. 12 3808
|
[87] |
Li Z, Qiao H, Ren X, et al. 2018 Adv. Funct. Mater. 28 1705237
|
[88] |
Klein C, Cohen-Elias D and Sarusi G 2018 Heliyon 4 12
|
[89] |
Suhail A, Pan G, Jenkins D and Islam K 2018 Carbon 129 520
|
[90] |
Kamat P V 2008 J. Phys. Chem. C 112 18737
|
[91] |
Guo C X, Yang H B, Sheng Z M, Lu Z S, Song Q L and Li C M 2010 Angew. Chem. Int. Ed. 49 3014
|
[92] |
Gan C H, Phua W K, Akimov Y A and Bai P 2010 Appl. Phys. Lett. 97 092115
|
[93] |
Zhang Y, Lim C K, Dai Z, Yu G, Haus J W, Zhang H and Prasad P N 2019 Phys. Rep. 795 1
|
[94] |
Vasko F T and Zozoulenko I V 2010 Appl. Phys. Lett. 97 092115
|
[95] |
Craciun M F, Russo S, Yamamoto M and Tarucha S 2011 Nano Today 6 42
|
[96] |
Goniszewski1 S, Adabi M, Shaforost O, Hanham S M, Hao L and Klein N 2016 Sci. Rep. 6 22858
|
[97] |
Nistor R A, Kuroda M A, Maarouf A A and Martyna G J 2012 Phys. Rev. B 86 041409
|
[98] |
Moser J, Verdaguer A, Jimenez D, Barreiro A and Bachtold A 2008 Appl. Phys. Lett. 92 123507
|
[99] |
Lafkioti M, Krauss B, Lohmann T, et al. 2010 Nano Lett. 10 1149
|
[100] |
Kong J, Franklin N R, Zhou C, et al. 2000 Science 287 622
|
[101] |
Pince E and Kocabas C 2010 Appl. Phys. Lett. 97 173106
|
[102] |
Das Sarma S, Adam S, Hwang E H and Rossi E 2011 Rev. Mod. Phys. 83 407
|
[103] |
Xia J, Chen F, Li J and Tao N 2009 Nat. Nanotechnol. 4 505
|
[104] |
Arya R K and Bala T S 2014 1st International Conference on Electrical Information and Communication Technology IEEE
|
[105] |
Rahman M T, Roy A K, Bhuiyan H M A R, Islam M T and Bhuiyan A G 2014 1st International Conference on Electrical Information and Communication Technology IEEE
|
[106] |
Thiele S A, Schaefer J A and Schwierz 2010 J. Appl. Phys. 107 094505
|
[107] |
Tsukagoshi K, Miyazaki H, Li S L, Kumatani A, Hiura H and Kanda A 2010 Semicond. Sci. Technol. 25 034008
|
[108] |
Miyazaki H, Li S Kanda A and Tsukagoshi K 2010 Semicond. Sci. Technol. 25 034008
|
[109] |
Qi Y, Hector L G J Ooi N and Adams J B 2005 Surf. Sci. 581 155
|
[110] |
Ziovannetti G, Khomyakov P A, Brocks G, Karpan V M, van den Brink J and Kelly J 2008 Phys. Rev. Lett. 101 026803
|
[111] |
Khomyakov P A, Giovannetti G, Rusu P C, Brocks G, Zan den Brink J and Kelly P J 2009 Phys. Rev. B 79 195425
|
[112] |
Xu F, Das S, Gong Y, Liu Q, Chien H C, Chiu H Y, Wu J and Hui R 2015 Appl. Phys. Lett. 106 031109
|
[113] |
Abhilash T S, De Alba R, Zhelev N, Craigheadb H G and Parpia J M 2015 Nanoscale 7 14109
|
[114] |
Kayyalha M and Chen Y P 2015 Appl. Phys. Lett. 107 113101
|
[115] |
Bokdam M, Khomyakov P A, Brocks G, Zhong Z and Kelly P J 2011 Nano Lett. 11 4631
|
[116] |
Zhang Y B, Brar V W, Wang F, Girit C, Yayon Y, Panlasigui M, Zettl A and Crommie M F 2008 Nat. Phys. 4 627
|
[117] |
Zhang Y B, Brar V W, Girit C, Zettl A and Crommie M F 2009 Nat. Phys. 5 722
|
[118] |
Kim L E and K S Kim P 2009 Nano Lett. 9 3430
|
[119] |
Decker R, Wang Y, Brar V W, Regan W, Tsai H Z, Wu Q, Gannett W, Zett A and Crommie M F 2011 Nano Lett. 11 2291
|
[120] |
Bagus P S, Staemmler V and Wöll C 2002 Phys. Rev. Lett. 89 096104
|
[121] |
Chaves F A, Jiménez D Cummings A W and Roch S 2014 J. Appl. Phys. 115 164513
|
[122] |
Champlain J G 2011 J. Appl. Phys. 109 084515
|
[123] |
Kim B K, Jeon E K, Kim J J and Lee J O 2010 J. Nanomater. Volume 2010 575472
|
[124] |
Yu Y J, Zhao Y, Ryu S Brus L E, Kim K S and Kim P 2009 Nano Lett. 9 3430
|
[125] |
Nanda B S and Puttaswamy P S 2019 Int. J. Electr. Comput. Eng. 9 4826
|
[126] |
Wang H Hsu A Kong J Antoniadis D A and Palacios T 2011 IEEE Transactions on Electron Devices 58 1523
|
[127] |
Gajarushi A S, Wasim M, Nabi R, Kancharlapalli S, Rao V R, Rajaraman V, Subramaniam C and Shanmugam 2019 M Mater. Horiz. 6 743
|
[128] |
A. Wirth Lima Jr. and Sombra A S B 2017 Opt. Quant. Electron. 49 388
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|