|
|
Dynamics of the plane and solitary waves in a Noguchi network: Effects of the nonlinear quadratic dispersion |
S A T Fonkoua1, M S Ngounou1, G R Deffo2, F B Pelap2, S B Yamgoue3, A Fomethe2 |
1 Unite de Recherche de Matière Condensée d'Electronique et de Traitement du Signal(UR-MACETS), Faculté des Sciences, Université de Dschang, BP 67 Dschang, Cameroun; 2 Unite de Recherche de Mécanique et de Modélisation des Systèmes Physiques(UR-2 MSP), Faculté des Sciences, Université de Dschang, BP 69 Dschang, Cameroun; 3 Department of Physics, Higher Teacher Training College Bambili, University of Bamenda, P. O. Box 39 Bamenda, Cameroon |
|
|
Abstract We consider a modified Noguchi network and study the impact of the nonlinear quadratic dispersion on the dynamics of modulated waves. In the semi-discrete limit, we show that the dynamics of these waves are governed by a nonlinear cubic Schrödinger equation. From the graphical analysis of the coefficients of this equation, it appears that the nonlinear quadratic dispersion counterbalances the effects of the linear dispersion in the frequency domain. Moreover, we establish that this nonlinear quadratic dispersion provokes the disappearance of some regions of modulational instability in the dispersion curve compared to the results earlier obtained by Pelap et al. (Phys. Rev. E 91 022925 (2015)). We also find that the nonlinear quadratic dispersion limit considerably affects the nature, stability, and characteristics of the waves which propagate through the system. Furthermore, the results of the numerical simulations performed on the exact equations describing the network are found to be in good agreement with the analytical predictions.
|
Received: 26 November 2019
Revised: 25 December 2019
Accepted manuscript online:
|
PACS:
|
05.45.-a
|
(Nonlinear dynamics and chaos)
|
|
05.45.Yv
|
(Solitons)
|
|
Corresponding Authors:
F B Pelap
E-mail: fbpelap@yahoo.fr
|
Cite this article:
S A T Fonkoua, M S Ngounou, G R Deffo, F B Pelap, S B Yamgoue, A Fomethe Dynamics of the plane and solitary waves in a Noguchi network: Effects of the nonlinear quadratic dispersion 2020 Chin. Phys. B 29 030501
|
[1] |
Hirota R and Suzuki K 1970 J. Phys. Soc. Jpn. 28 1366
|
[2] |
Toda M 1967 J. Phys. Soc. Jpn. 23 501
|
[3] |
Nejoh Y 1987 J. Phys. A: Math. Gen. 20 1733
|
[4] |
Afshari E and Hajimiri A 2005 IEEE J. Solid State Circuits 40 744
|
[5] |
Enjieu Kadji H G, Nana Nbendjo B R, Chabi Orou J B and Talla P K 2008 Phys. Plasmas 15 032308
|
[6] |
Makenne Y L, Kengne R and Pelap F B 2019 Chaos Soliton. Fract. 127 70
|
[7] |
Ndzana I I F and Mohamadou A 2019 Chaos 29 013116
|
[8] |
Noguchi A 1974 Electron. Commun. Jpn. A 57 9
|
[9] |
Ichikawa Y H, Mitsuhaski T and Konno K 1976 J. Phys. Soc. Jpn. 41 1382
|
[10] |
Pelap F B and Faye M M 2005 J. Math. Phys. 46 033502
|
[11] |
Ndzana I I F, Mohamadou A and Kofane T C 2007 J. Phys. D 40 3254
|
[12] |
Pelap F B, Kamga J H, Yamgoue S B, Ngounou S M and Fomethe A 2015 Chin. J. Phys. 53 080701
|
[13] |
Yamgoue S B, Deffo G R, Talla-Tebue E and Pelap F B 2018 Chin. Phys. B 27 126303
|
[14] |
Deffo G R, Yamgoue S B and Pelap F B 2018 Phys. Rev. E 98 062201
|
[15] |
Kengne E, Lakhssassi A and Liu W M 2017 Phys. Rev. E 96 022221
|
[16] |
Deffo G R, Yamgoue S B and Pelap F B 2018 Eur. Phys. J. B 91 242
|
[17] |
Deffo G R, Yamgoue S B and Pelap F B 2019 Phys. Rev. E 100 022214
|
[18] |
Nguetcho A S T, Nkeumaleu G M and Bilbault J M 2017 Phys. Rev. E 96 022207
|
[19] |
Pelap F B, Kamga J H, Yamgoue S B, Ngounou S M and Ndecfo J E 2015 Phys. Rev. E 91 022925
|
[20] |
Yamgoue S B, Deffo G R, Tala-Tebue E and Pelap F B 2018 Chin. Phys. B 27 096301
|
[21] |
Abdullaev F K, Darmanyan S A and Garnier J 2002 Prog. Opt. 44 303
|
[22] |
Malendevich R, Jankovic L, Stegeman G I and Aitchison J S 2001 Opt. Lett. 26 1879
|
[23] |
Zakharov V and Ostrovsky L 2009 Physica D 238 540
|
[24] |
Tabi C B, Mohamadou A and Kofane T C 2008 J. Phys.: Condens. Matter 20 415104
|
[25] |
Mohamadou A, Wamba E, Doka S Y, Ekogo T B and Kofane T C 2011 Phys. Rev. A 84 023602
|
[26] |
Mohamadou A, Kenfack-Jiotsa A and Kofane T C 2006 Chaos Soliton. Fract. 27 914
|
[27] |
Abdoulkary S, Tabi C B, Doka S Y, Ndzana I I F, Kavitha L and Mohamadou A 2012 J. Mod. Phys. 3 438
|
[28] |
Remoissenet M 1999 Waves Called Solitons (3rd Edn.) (Berlin: Springer-Verlag)
|
[29] |
Kengne E and Lakhssassi A 2015 Phys. Rev. E 91 032907
|
[30] |
Togueu Motchey A B, Tchinang Tchameu J D, Fewo S I, Tchawoua C and Kofane T C 2017 Commun. Nonlinear. Sci. Numer. Simulat 53 22
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|