Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(3): 030501    DOI: 10.1088/1674-1056/ab696a
GENERAL Prev   Next  

Dynamics of the plane and solitary waves in a Noguchi network: Effects of the nonlinear quadratic dispersion

S A T Fonkoua1, M S Ngounou1, G R Deffo2, F B Pelap2, S B Yamgoue3, A Fomethe2
1 Unite de Recherche de Matière Condensée d'Electronique et de Traitement du Signal(UR-MACETS), Faculté des Sciences, Université de Dschang, BP 67 Dschang, Cameroun;
2 Unite de Recherche de Mécanique et de Modélisation des Systèmes Physiques(UR-2 MSP), Faculté des Sciences, Université de Dschang, BP 69 Dschang, Cameroun;
3 Department of Physics, Higher Teacher Training College Bambili, University of Bamenda, P. O. Box 39 Bamenda, Cameroon
Abstract  We consider a modified Noguchi network and study the impact of the nonlinear quadratic dispersion on the dynamics of modulated waves. In the semi-discrete limit, we show that the dynamics of these waves are governed by a nonlinear cubic Schrödinger equation. From the graphical analysis of the coefficients of this equation, it appears that the nonlinear quadratic dispersion counterbalances the effects of the linear dispersion in the frequency domain. Moreover, we establish that this nonlinear quadratic dispersion provokes the disappearance of some regions of modulational instability in the dispersion curve compared to the results earlier obtained by Pelap et al. (Phys. Rev. E 91 022925 (2015)). We also find that the nonlinear quadratic dispersion limit considerably affects the nature, stability, and characteristics of the waves which propagate through the system. Furthermore, the results of the numerical simulations performed on the exact equations describing the network are found to be in good agreement with the analytical predictions.
Keywords:  Noguchi network      nonlinear quadratic dispersion      modulational instability      soliton  
Received:  26 November 2019      Revised:  25 December 2019      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Yv (Solitons)  
Corresponding Authors:  F B Pelap     E-mail:  fbpelap@yahoo.fr

Cite this article: 

S A T Fonkoua, M S Ngounou, G R Deffo, F B Pelap, S B Yamgoue, A Fomethe Dynamics of the plane and solitary waves in a Noguchi network: Effects of the nonlinear quadratic dispersion 2020 Chin. Phys. B 29 030501

[1] Hirota R and Suzuki K 1970 J. Phys. Soc. Jpn. 28 1366
[2] Toda M 1967 J. Phys. Soc. Jpn. 23 501
[3] Nejoh Y 1987 J. Phys. A: Math. Gen. 20 1733
[4] Afshari E and Hajimiri A 2005 IEEE J. Solid State Circuits 40 744
[5] Enjieu Kadji H G, Nana Nbendjo B R, Chabi Orou J B and Talla P K 2008 Phys. Plasmas 15 032308
[6] Makenne Y L, Kengne R and Pelap F B 2019 Chaos Soliton. Fract. 127 70
[7] Ndzana I I F and Mohamadou A 2019 Chaos 29 013116
[8] Noguchi A 1974 Electron. Commun. Jpn. A 57 9
[9] Ichikawa Y H, Mitsuhaski T and Konno K 1976 J. Phys. Soc. Jpn. 41 1382
[10] Pelap F B and Faye M M 2005 J. Math. Phys. 46 033502
[11] Ndzana I I F, Mohamadou A and Kofane T C 2007 J. Phys. D 40 3254
[12] Pelap F B, Kamga J H, Yamgoue S B, Ngounou S M and Fomethe A 2015 Chin. J. Phys. 53 080701
[13] Yamgoue S B, Deffo G R, Talla-Tebue E and Pelap F B 2018 Chin. Phys. B 27 126303
[14] Deffo G R, Yamgoue S B and Pelap F B 2018 Phys. Rev. E 98 062201
[15] Kengne E, Lakhssassi A and Liu W M 2017 Phys. Rev. E 96 022221
[16] Deffo G R, Yamgoue S B and Pelap F B 2018 Eur. Phys. J. B 91 242
[17] Deffo G R, Yamgoue S B and Pelap F B 2019 Phys. Rev. E 100 022214
[18] Nguetcho A S T, Nkeumaleu G M and Bilbault J M 2017 Phys. Rev. E 96 022207
[19] Pelap F B, Kamga J H, Yamgoue S B, Ngounou S M and Ndecfo J E 2015 Phys. Rev. E 91 022925
[20] Yamgoue S B, Deffo G R, Tala-Tebue E and Pelap F B 2018 Chin. Phys. B 27 096301
[21] Abdullaev F K, Darmanyan S A and Garnier J 2002 Prog. Opt. 44 303
[22] Malendevich R, Jankovic L, Stegeman G I and Aitchison J S 2001 Opt. Lett. 26 1879
[23] Zakharov V and Ostrovsky L 2009 Physica D 238 540
[24] Tabi C B, Mohamadou A and Kofane T C 2008 J. Phys.: Condens. Matter 20 415104
[25] Mohamadou A, Wamba E, Doka S Y, Ekogo T B and Kofane T C 2011 Phys. Rev. A 84 023602
[26] Mohamadou A, Kenfack-Jiotsa A and Kofane T C 2006 Chaos Soliton. Fract. 27 914
[27] Abdoulkary S, Tabi C B, Doka S Y, Ndzana I I F, Kavitha L and Mohamadou A 2012 J. Mod. Phys. 3 438
[28] Remoissenet M 1999 Waves Called Solitons (3rd Edn.) (Berlin: Springer-Verlag)
[29] Kengne E and Lakhssassi A 2015 Phys. Rev. E 91 032907
[30] Togueu Motchey A B, Tchinang Tchameu J D, Fewo S I, Tchawoua C and Kofane T C 2017 Commun. Nonlinear. Sci. Numer. Simulat 53 22
[1] Riemann--Hilbert approach of the complex Sharma—Tasso—Olver equation and its N-soliton solutions
Sha Li(李莎), Tiecheng Xia(夏铁成), and Hanyu Wei(魏含玉). Chin. Phys. B, 2023, 32(4): 040203.
[2] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems
Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506.
[3] Soliton molecules, T-breather molecules and some interaction solutions in the (2+1)-dimensional generalized KDKK equation
Yiyuan Zhang(张艺源), Ziqi Liu(刘子琪), Jiaxin Qi(齐家馨), and Hongli An(安红利). Chin. Phys. B, 2023, 32(3): 030505.
[4] Modulational instability of a resonantly polariton condensate in discrete lattices
Wei Qi(漆伟), Xiao-Gang Guo(郭晓刚), Liang-Wei Dong(董亮伟), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2023, 32(3): 030502.
[5] Real-time observation of soliton pulsation in net normal-dispersion dissipative soliton fiber laser
Xu-De Wang(汪徐德), Xu Geng(耿旭), Jie-Yu Pan(潘婕妤), Meng-Qiu Sun(孙梦秋), Meng-Xiang Lu(陆梦想), Kai-Xin Li(李凯芯), and Su-Wen Li(李素文). Chin. Phys. B, 2023, 32(2): 024210.
[6] Matrix integrable fifth-order mKdV equations and their soliton solutions
Wen-Xiu Ma(马文秀). Chin. Phys. B, 2023, 32(2): 020201.
[7] A cladding-pumping based power-scaled noise-like and dissipative soliton pulse fiber laser
Zhiguo Lv(吕志国), Hao Teng(滕浩), and Zhiyi Wei(魏志义). Chin. Phys. B, 2023, 32(2): 024207.
[8] Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schrödinger equation
Xuefeng Zhang(张雪峰), Tao Xu(许韬), Min Li(李敏), and Yue Meng(孟悦). Chin. Phys. B, 2023, 32(1): 010505.
[9] Charge self-trapping in two strand biomolecules: Adiabatic polaron approach
D Chevizovich, S Zdravković, A V Chizhov, and Z Ivić. Chin. Phys. B, 2023, 32(1): 010506.
[10] Oscillation properties of matter-wave bright solitons in harmonic potentials
Shu-Wen Guan(关淑文), Ling-Zheng Meng(孟令正), and Li-Chen Zhao(赵立臣). Chin. Phys. B, 2022, 31(8): 080506.
[11] Gap solitons of spin-orbit-coupled Bose-Einstein condensates in $\mathcal{PT}$ periodic potential
S Wang(王双), Y H Liu(刘元慧), and T F Xu(徐天赋). Chin. Phys. B, 2022, 31(7): 070306.
[12] Spatio-spectral dynamics of soliton pulsation with breathing behavior in the anomalous dispersion fiber laser
Ying Han(韩颖), Bo Gao(高博), Jiayu Huo(霍佳雨), Chunyang Ma(马春阳), Ge Wu(吴戈),Yingying Li(李莹莹), Bingkun Chen(陈炳焜), Yubin Guo(郭玉彬), and Lie Liu(刘列). Chin. Phys. B, 2022, 31(7): 074208.
[13] Propagation and modulational instability of Rossby waves in stratified fluids
Xiao-Qian Yang(杨晓倩), En-Gui Fan(范恩贵), and Ning Zhang(张宁). Chin. Phys. B, 2022, 31(7): 070202.
[14] Sequential generation of self-starting diverse operations in all-fiber laser based on thulium-doped fiber saturable absorber
Pei Zhang(张沛), Kaharudin Dimyati, Bilal Nizamani, Mustafa M. Najm, and S. W. Harun. Chin. Phys. B, 2022, 31(6): 064204.
[15] Manipulating vector solitons with super-sech pulse shapes
Yan Zhou(周延), Keyun Zhang(张克赟), Chun Luo(罗纯), Xiaoyan Lin(林晓艳), Meisong Liao(廖梅松), Guoying Zhao(赵国营), and Yongzheng Fang(房永征). Chin. Phys. B, 2022, 31(5): 054203.
No Suggested Reading articles found!