Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(1): 016403    DOI: 10.1088/1674-1056/abb220
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Novel structures and mechanical properties of Zr2N: Ab initio description under high pressures

Minru Wen(文敏儒)1, Xing Xie(谢兴)1, Zhixun Xie(谢植勋)1, Huafeng Dong(董华锋)1,†, Xin Zhang(张欣)1, Fugen Wu(吴福根)2, and Chong-Yu Wang(王崇愚)3,
1 School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China; 2 School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China; 3 Department of Physics, Tsinghua University, Beijing 100084, China
Abstract  With the formation of structural vacancies, zirconium nitrides (key materials for cutting coatings, super wear-resistance, and thermal barrier coatings) display a variety of compositions and phases featuring both cation and nitrogen enrichment. This study presents a systematic exploration of the stable crystal structures of zirconium heminitride combining the evolutionary algorithm method and ab initio density functional theory calculations at pressures of 0 GPa, 30 GPa, 60 GPa, 90 GPa, 120 GPa, 150 GPa, and 200 GPa. In addition to the previously proposed phases P42/mnm-, Pnnm-, and Cmcm-Zr2N, five new high-pressure Zr2N phases of P4/nmm, I4/mcm, P21/m, \(P\bar 3 m1\), and C2/m are discovered. An enthalpy study of these candidate configurations reveals various structural phase transformations of Zr2N under pressure. By calculating the elastic constants and phonon dispersion, the mechanical and dynamical stabilities of all predicted structures are examined at ambient and high pressures. To understand the structure-property relationships, the mechanical properties of all Zr2N compounds are investigated, including the elastic moduli, Vickers hardness, and directional dependence of Young's modulus. The Cmcm-Zr2N phase is found to belong to the brittle materials and has the highest Vickers hardness (12.9 GPa) among all candidate phases, while the I4/mcm-Zr2N phase is the most ductile and has the lowest Vickers hardness (2.1 GPa). Furthermore, the electronic mechanism underlying the diverse mechanical behaviors of Zr2N structures is discussed by analyzing the partial density of states.
Keywords:  phase transition      phonon dispersion      Zr2N      first-principles calculations  
Received:  17 August 2020      Revised:  01 January 1900      Accepted manuscript online:  25 August 2020
PACS:  64.60.-i (General studies of phase transitions)  
  63.20.D- (Phonon states and bands, normal modes, and phonon dispersion)  
  81.05.Je (Ceramics and refractories (including borides, carbides, hydrides, nitrides, oxides, and silicides))  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11804057), the National Key R&D Program of China (Grant No. 2017YFB0701500), and the Natural Science Foundation of Guangdong, China (Grant Nos. 2017B030306003 and 2020A1515010862).
Corresponding Authors:  Corresponding author. E-mail: hfdong@gdut.edu.cn Corresponding author. E-mail: cywang@mail.tsinghua.edu.cn   

Cite this article: 

Minru Wen(文敏儒), Xing Xie(谢兴), Zhixun Xie(谢植勋), Huafeng Dong(董华锋), Xin Zhang(张欣), Fugen Wu(吴福根), and Chong-Yu Wang(王崇愚) Novel structures and mechanical properties of Zr2N: Ab initio description under high pressures 2021 Chin. Phys. B 30 016403

1 Musil J 2000 Surface & Coatings Technology 125 322
2 Gotoh Y, Fujiwara S and Tsuji H 2016 Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 34 031401
3 Siow P C, A. Ghani J, Ghazali M J, Jaafar T R, Selamat M A and Che Haron C H 2013 Ceramics International 39 1293
4 Sue J A and Troue H H 1991 Surface & Coatings Technology 49 31
5 Ogawa T 1994 J. Alloys Compd. 203 221
6 Gusev A I and Rempel A A 1997 Physica Status Solidi (a) 163 273
7 Wang W E and Olander D R 1995 Journal of Alloys and Compounds 224 153
8 Pierson H O1997 Handbook of Refractory Carbides and Nitrides: Properties, Characteristics, Processing and Applications (New York: Noyes Publication)
9 Zerr A, Miehe G and Riedel R 2003 Nat. Mater. 2 185
10 Bhadram V S, Kim D Y and Strobel T A 2016 Chemistry of Materials 28 1616
11 Brik M G and Ma C G 2012 Computational Materials Science 51 380
12 Srivastava A, Chauhan M and Singh R K 2011 Physica Status Solidi 248 2793
13 Chauhan M and Gupta D C 2014 International Journal of Refractory Metals and Hard Materials 42 77
14 Wang A J, Shang S L, Zhao D D, Wang J, Chen L, Du Y, Liu Z K, Xu T and Wang S Q 2012 Calphad-Comput. Coupling Ph. Diagrams Thermochem. 37 126
15 Weinberger C R, Yu X X, Yu H and Thompson G B 2017 Computational Materials Science 138 333
16 Yu R, Sun E, Jiao L, Cai Y, Wang H and Yao Y 2018 RSC Advances 8 36412
17 Yu S, Zeng Q, Oganov A R, Frapper G and Zhang L 2015 Phys. Chem. Chem. Phys. 17 11763
18 Bazhanov D I, Knizhnik A A, Safonov A A, Bagatur'yants A A, Stoker M W and Korkin A A 2005 J. Appl. Phys. 97 044108
19 Durandurdu M 2019 Philosophical Magazine 99 942
20 Yu S, Zeng Q, Oganov A R, Frapper G, Huang B, Niu H and Zhang L 2017 RSC Advances 7 4697
21 Zhang J, Oganov A R, Li X and Niu H 2017 Phys. Rev. B 95 020103
22 Oganov A R and Glass C W 2006 J. Chem. Phys. 124 244704
23 Oganov A R, Lyakhov A O and Valle M 2011 Accounts of Chemical Research 44 227
24 Oganov A R, Ma Y, Lyakhov A O, Valle M and Gatti C 2010 Reviews in Mineralogy & Geochemistry 71 271
25 Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
26 Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864
27 Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
28 Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
29 Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
30 Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
31 Baroni S, De Gironcoli S, Dal Corso A and Giannozzi P 2001 Rev. Mod. Phys. 73 515
32 Baroni S and Resta R 1986 Phys. Rev. B 33 7017
33 Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106
34 Shang S, Wang Y and Liu Z K 2007 Appl. Phys. Lett. 90 101909
35 Hill R 1952 Proc. Phys. Soc. Sect. A 65 349
36 Voigt W1928 Lehrbuch der Kristallphysik(Leipzig Berlin: Ann Arbor, Mich)
37 Reuss A1929 J. Appl. Mathematics Mech. 9 49
38 Chen X Q, Niu H, Li D and Li Y 2011 Intermetallics 19 1275
39 Zeng Q, Peng J, Oganov A R, Zhu Q, Xie C, Zhang X, Dong D, Zhang L and Cheng L 2013 Phys. Rev. B 88 214107
40 Jiang C and Jiang W 2014 Physica Status Solidi (b) 251 533
41 Clatterbuck D M, Krenn C R, Cohen M L and Morris Jr J W 2003 Phys. Rev. Lett. 91 135501
42 Milstein F 1971 Phys. Rev. B 3 1130
43 Nye J F1985 Physical Properties of Crystals: Their Representation by Tensors and Matrices (New York: Oxford University Press)
44 Wang H and Li M 2010 J. Phys.: Condens. Matter 22 295405
45 Mouhat F and Coudert F X 2014 Phys. Rev. B 90 224104
46 Wen M, Xie X, Gao Y, Dong H, Mu Z, Wu F and Wang C Y 2019 J. Alloys and Compd. 806 1260
47 Tsuchiya T, Yamanaka T and Matsui M 2000 Physics and Chemistry of Minerals 27 149
48 Winston D and Jong M D Materials Project
49 Pugh S F 1954 The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 45 823
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[3] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[4] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[5] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[6] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[7] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[8] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[9] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[10] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[11] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[12] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[13] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[14] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[15] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
No Suggested Reading articles found!