Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(12): 128501    DOI: 10.1088/1674-1056/20/12/128501
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

A novel planar vertical double-diffused metal-oxide- semiconductor field-effect transistor with inhomogeneous floating islands

Ren Min(任敏), Li Ze-Hong(李泽宏), Liu Xiao-Long(刘小龙), Xie Jia-Xiong(谢加雄), Deng Guang-Min(邓光敏), and Zhang Bo(张波)
State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
Abstract  A novel planar vertical double-diffused metal-oxide-semiconductor (VDMOS) structure with an ultra-low specific on-resistance (Ron,sp), whose distinctive feature is the use of inhomogeneous floating p-islands in the n-drift region, is proposed. The theoretical limit of its Ron,sp is deduced, the influence of structure parameters on the breakdown voltage (BV) and Ron,sp are investigated, and the optimized results with BV of 83 V and Ron,sp of 54 mOmega cdotmm2 are obtained. Simulations show that the inhomogeneous-floating-islands metal-oxide-semiconductor field-effect transistor (MOSFET) has a superior “Ron,sp/BV” trade-off to the conventional VDMOS (a 38% reduction of Ron,sp with the same BV) and the homogeneous-floating-islands MOSFET (a 10% reduction of Ron,sp with the same BV). The inhomogeneous-floating-islands MOSFET also has a much better body-diode characteristic than the superjunction MOSFET. Its reverse recovery peak current, reverse recovery time and reverse recovery charge are about 50, 80 and 40% of those of the superjunction MOSFET, respectively.
Keywords:  inhomogeneous floating islands      specific on-state resistance      breakdown voltage      body diode reverse recovery  
Received:  23 June 2011      Revised:  10 July 2011      Accepted manuscript online: 
PACS:  85.30.Tv (Field effect devices)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
Fund: Project supported by the National Key Scientific and Technological Project (Grant No. 2011ZX02503-005) and the Fundamental Research Funds for the Central Universities (Grant No. ZYGX2010J038).

Cite this article: 

Ren Min(任敏), Li Ze-Hong(李泽宏), Liu Xiao-Long(刘小龙), Xie Jia-Xiong(谢加雄), Deng Guang-Min(邓光敏), and Zhang Bo(张波) A novel planar vertical double-diffused metal-oxide- semiconductor field-effect transistor with inhomogeneous floating islands 2011 Chin. Phys. B 20 128501

[1] Takaya H, Miyagi K and Hamada K 2005 Proceedings of the 17th International Symposium on Power Semiconductor Devices and ICs May 23-26, 2005 Santa Barbara, p. 43
[2] Duan B X, Zhang B and Li Z J 2007 Chin. Phys. 16 3754
[3] Wang C L and Sun J 2009 Chin. Phys. B 18 1231
[4] Shenoy P M, Bhalla A and Dolny G M 1999 Proceedings of the 11th International Symposium on Power Semiconductor Devices and ICs May 26-28, 1999 Toronto, Canada p. 99
[5] Gao Y, Ma L, Zhang R L and Wang D F 2011 Acta Phys. Sin. 60 047303 (in Chinese)
[6] Saito W, Omura I, Aida S, Koduki S, Izumisawa M, Yoshioka H and Ogura T 2005 Proceedings of the 17th I nternational Symposium on Power Semiconductor Devices and ICs May 23-26, 2005 Santa Barbara, USA p. 27
[7] Cezac N, Morancho F, Rossel P, Tranducand H and Peyre Lavigne A 2000 Proceedings of the 12th International Symposium on Power Semiconductor Devices and ICs USA, Toulouse, France, May 22-25, 2000 p. 69
[8] Alves S, Morancho F, Reynes J M, Margheritta J, Deram I, Isoird K and Tranduc H 2006 The European Conference on Power Electronics and Applications September 11-14, 2005, Dresden, Germany p. 10
[9] Luo X R, Fu D P, Gao H M and Chen X 2010 IEEE International Conference on Communications, Circuits and Systems (ICCCAS), July 28-30, 2010 Chengdu, China, p. 496
[10] Galadi A, Morancho F and Hassani M M 2008 Semicond. Sci. Technol. 23 045017
[11] Fang J, Qiao M and Li Z J 2006 Acta Phys. Sin. 55 3656 (in Chinese)
[12] ST Microelectronics Corp. www.stmicroelectronics.com.cn
[1] Design optimization of high breakdown voltage vertical GaN junction barrier Schottky diode with high-K/low-K compound dielectric structure
Kuiyuan Tian(田魁元), Yong Liu(刘勇), Jiangfeng Du(杜江锋), and Qi Yu(于奇). Chin. Phys. B, 2023, 32(1): 017306.
[2] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[3] Fast-switching SOI-LIGBT with compound dielectric buried layer and assistant-depletion trench
Chunzao Wang(王春早), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2022, 31(4): 047304.
[4] Lateral β-Ga2O3 Schottky barrier diode fabricated on (-201) single crystal substrate and its temperature-dependent current-voltage characteristics
Pei-Pei Ma(马培培), Jun Zheng(郑军), Ya-Bao Zhang(张亚宝), Xiang-Quan Liu(刘香全), Zhi Liu(刘智), Yu-Hua Zuo(左玉华), Chun-Lai Xue(薛春来), and Bu-Wen Cheng(成步文). Chin. Phys. B, 2022, 31(4): 047302.
[5] Modeling of high permittivity insulator structure with interface charge by charge compensation
Zhi-Gang Wang(汪志刚), Yun-Feng Gong(龚云峰), and Zhuang Liu(刘壮). Chin. Phys. B, 2022, 31(2): 028501.
[6] Terminal-optimized 700-V LDMOS with improved breakdown voltage and ESD robustness
Jie Xu(许杰), Nai-Long He(何乃龙), Hai-Lian Liang(梁海莲), Sen Zhang(张森), Yu-De Jiang(姜玉德), and Xiao-Feng Gu(顾晓峰). Chin. Phys. B, 2021, 30(6): 067303.
[7] Design and simulation of AlN-based vertical Schottky barrier diodes
Chun-Xu Su(苏春旭), Wei Wen(温暐), Wu-Xiong Fei(费武雄), Wei Mao(毛维), Jia-Jie Chen(陈佳杰), Wei-Hang Zhang(张苇杭), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(6): 067305.
[8] A super-junction SOI-LDMOS with low resistance electron channel
Wei-Zhong Chen(陈伟中), Yuan-Xi Huang(黄元熙), Yao Huang(黄垚), Yi Huang(黄义), and Zheng-Sheng Han(韩郑生). Chin. Phys. B, 2021, 30(5): 057303.
[9] Improved 4H-SiC UMOSFET with super-junction shield region
Pei Shen(沈培), Ying Wang(王颖), Xing-Ji Li(李兴冀), Jian-Qun Yang(杨剑群), Cheng-Hao Yu(于成浩), and Fei Cao(曹菲). Chin. Phys. B, 2021, 30(5): 058502.
[10] Novel Si/SiC heterojunction lateral double-diffused metal-oxide semiconductor field-effect transistor with p-type buried layer breaking silicon limit
Baoxing Duan(段宝兴), Xin Huang(黄鑫), Haitao Song (宋海涛), Yandong Wang(王彦东), and Yintang Yang(杨银堂). Chin. Phys. B, 2021, 30(4): 048503.
[11] Novel fast-switching LIGBT with P-buried layer and partial SOI
Haoran Wang(王浩然), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2021, 30(2): 027302.
[12] Simulation study of high voltage GaN MISFETs with embedded PN junction
Xin-Xing Fei(费新星), Ying Wang(王颖), Xin Luo(罗昕), Cheng-Hao Yu(于成浩). Chin. Phys. B, 2020, 29(8): 080701.
[13] Variable-K double trenches SOI LDMOS with high-concentration P-pillar
Lijuan Wu(吴丽娟), Lin Zhu(朱琳), Xing Chen(陈星). Chin. Phys. B, 2020, 29(5): 057701.
[14] Numerical and analytical investigations for the SOI LDMOS with alternated high-k dielectric and step doped silicon pillars
Jia-Fei Yao(姚佳飞), Yu-Feng Guo(郭宇锋), Zhen-Yu Zhang(张振宇), Ke-Meng Yang(杨可萌), Mao-Lin Zhang(张茂林), Tian Xia(夏天). Chin. Phys. B, 2020, 29(3): 038503.
[15] Breakdown voltage enhancement in GaN channel and AlGaN channel HEMTs using large gate metal height
Zhong-Xu Wang(王中旭), Lin Du(杜林), Jun-Wei Liu(刘俊伟), Ying Wang(王颖), Yun Jiang(江芸), Si-Wei Ji(季思蔚), Shi-Wei Dong(董士伟), Wei-Wei Chen(陈伟伟), Xiao-Hong Tan(谭骁洪), Jin-Long Li(李金龙), Xiao-Jun Li(李小军), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(2): 027301.
No Suggested Reading articles found!