Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(12): 125201    DOI: 10.1088/1674-1056/20/12/125201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Near-wall conductivity effect under a space–charge-saturated sheath in the Hall thruster

Zhang Feng-Kui(张凤奎)a)†, Ding Yong-Jie(丁永杰)b)‡, Qing Shao-Wei(卿绍伟)b), and Wu Xian-De(吴限德) a)
a College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin 150001, China; b HIT Plasma Propulsion Laboratory, Harbin Institute of Technology, Harbin 150001, China
Abstract  In this paper, we adopt the modified Morozov secondary electron emission model to investigate the influence of the characteristic of a space-charge-saturated sheath near the insulated wall of the Hall thruster on the near-wall conductivity, by the method of two-dimensional (2D) particle simulation (2D+3V). The results show that due to the sharp increase of collision frequency between the electrons and the wall under the space-charge-saturated sheath, the near-wall transport current under this sheath is remarkably higher than that under a classical sheath, and equals the near-wall transport current under a spatially oscillating sheath in order of magnitude. However, the transport currents under a space-charge-saturated sheath and a spatially oscillating sheath are different in mechanism, causing different current density distributions under the above two sheaths, and a great influence of channel width on the near-wall transport current under a space-charge-saturated sheath.
Keywords:  saturated sheath      conductivity      current  
Received:  19 September 2011      Revised:  12 October 2011      Accepted manuscript online: 
PACS:  52.40.Kh (Plasma sheaths)  
  94.30.cj (Magnetosheath)  
Fund: Project supported by the Fundamental Research Funds for the Central Universities (Grant No. HEUCF100212) and the National Natural Science Foundation of China (Grant Nos. 51007013, 10875024, and 10975026).

Cite this article: 

Zhang Feng-Kui(张凤奎), Ding Yong-Jie(丁永杰), Qing Shao-Wei(卿绍伟), and Wu Xian-De(吴限德) Near-wall conductivity effect under a space–charge-saturated sheath in the Hall thruster 2011 Chin. Phys. B 20 125201

[1] Meezan N B and Cappelli M A 2002 Phys. Rev. E 66 036401
[2] Bohm D 1949 The Characterister of Electrical Discharge in Magnetic Field (New York: McGraw-Hill) p. 77
[3] Morozov A I and Savelyev V V 2001 Reviews of Plasma Physics (New York: Consultants Bureau) p. 211
[4] Morozov A I 1968 Prikl. Mekh. Tekh. Fuz. 3 19 (in Russian)
[5] Morozov A I and Savelyev V V 2001 Plasma Phys. Rep. 7 570
[6] Morozov A I and Savelyev V V 2001 Reviews of Plasma Physics (New York: Consultants Bureau) p. 291
[7] Morozov A I and Savelyev V V 2002 Plasma Phys. Rep. 28 1017
[8] Morozov A I and Savelyev V V 2004 Plasma Phys. Rep. 30 299
[9] Zou X 2006 Acta Phys. Sin. 55 1907 (in Chinese)
[10] Zou X, Liu H P and Gu X E 2008 Acta Phys. Sin. 57 5111 (in Chinese)
[11] Zou X, Gi T K and Zou B Y 2010 Acta Phys. Sin. 59 1902 (in Chinese)
[12] Wang D Y, Ma J X, Li Y R and Zhang W G 2009 Acta Phys. Sin. 58 8432 (in Chinese)
[13] Li Y R, Ma J X, Zheng Y B and Zhang W G 2010 Chin. Phys. B 19 085201
[14] Tan Z X, Huang Y S, Lan X F, Lu J X, Duan X J, Wang L J, Yang D W, Guo S L and Wang N Y 2010 Chin. Phys. B 19 055201
[15] Da Z L, Wang Y N and Ma T C 2001 Acta Phys. Sin. 50 2398 (in Chinese)
[16] Liu C S and Wang D Z 2003 Acta Phys. Sin. 52 109 (in Chinese)
[17] Hou L J and Wang Y N 2003 Acta Phys. Sin. 52 434 (in Chinese)
[18] Wang Z X, Liu J Y, Zou X, Liu Y and Wang X G 2004 Acta Phys. Sin. 53 793 (in Chinese)
[19] Zou X, Liu J Y, Wang Z X, Gong Y, Liu Y and Wang X G 2004 Acta Phys. Sin. 53 3409 (in Chinese)
[20] Duan P, Liu J Y, Gong Y, Zhang Y, Liu Y and Wang X G 2007 Acta Phys. Sin. 56 7090 (in Chinese)
[21] Liu C S, Wang D Z, Liu T W and Wang Y H 2008 Acta Phys. Sin. 57 6450 (in Chinese)
[22] Liu C S, Han H Y, Peng X Q, Chang Y and Wang D Z 2010 Chin. Phys. B 19 035201
[23] Zhang F K, Yu D R, Ding Y J and Li H 2011 Appl. Phys. Lett. 98 111501
[24] Li H, Zhang F K, Liu H and Yu D R 2010 Phys. Plasmas 17 074505
[25] Barral S, Makowski K, Peradzynski Z, Gascon N and Dudeck M 2003 Phys. Plasmas 10 4137
[26] Zhang F K and Ding Y J 2011 Acta Phys. Sin. 60 065203 (in Chinese)
[27] Dunaevsky A, Raitses Y and Fisch N J 2003 Phys. Plasmas 10 2574
[28] Morozov A I and Savelyev V V 2001 Reviews of Plasma Physics (New York: Consultants Bureau) p. 241
[29] Gascon N, Dudeck M and Barral S 2003 Phys. Plasmas 10 4123
[30] Raitses Y, Staack D, Keidar M and Fisch N J 2005 Phys. Plasmas 12 057104
[31] Bugrova A I, Morozov A I and Kharchevnikov V K 1992 Fiz. Plazmy. 16 849 (in Russian)
[1] Precision measurement and suppression of low-frequency noise in a current source with double-resonance alignment magnetometers
Jintao Zheng(郑锦韬), Yang Zhang(张洋), Zaiyang Yu(鱼在洋), Zhiqiang Xiong(熊志强), Hui Luo(罗晖), and Zhiguo Wang(汪之国). Chin. Phys. B, 2023, 32(4): 040601.
[2] Enhanced topological superconductivity in an asymmetrical planar Josephson junction
Erhu Zhang(张二虎) and Yu Zhang(张钰). Chin. Phys. B, 2023, 32(4): 040307.
[3] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[4] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[5] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[6] SiC gate-controlled bipolar field effect composite transistor with polysilicon region for improving on-state current
Baoxing Duan(段宝兴), Kaishun Luo(罗开顺), and Yintang Yang(杨银堂). Chin. Phys. B, 2023, 32(4): 047702.
[7] Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures
Yuan Liu(刘源), Zhongran Liu(刘中然), Meng Zhang(张蒙), Yanqiu Sun(孙艳秋), He Tian(田鹤), and Yanwu Xie(谢燕武). Chin. Phys. B, 2023, 32(3): 037305.
[8] Current bifurcation, reversals and multiple mobility transitions of dipole in alternating electric fields
Wei Du(杜威), Kao Jia(贾考), Zhi-Long Shi(施志龙), and Lin-Ru Nie(聂林如). Chin. Phys. B, 2023, 32(2): 020505.
[9] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[10] Polyhedral silver clusters as single molecule ammonia sensor based on charge transfer-induced plasmon enhancement
Jiu-Huan Chen(陈九环) and Xin-Lu Cheng(程新路). Chin. Phys. B, 2023, 32(1): 017302.
[11] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[12] Influence of Dzyaloshinskii-Moriya interaction on the magnetic vortex reversal in an off-centered nanocontact geometry
Hua-Nan Li(李化南), Tong-Xin Xue(薛彤鑫), Lei Chen(陈磊), Ying-Rui Sui(隋瑛瑞), and Mao-Bin Wei(魏茂彬). Chin. Phys. B, 2022, 31(9): 097501.
[13] Superconductivity and unconventional density waves in vanadium-based kagome materials AV3Sb5
Hui Chen(陈辉), Bin Hu(胡彬), Yuhan Ye(耶郁晗), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097405.
[14] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[15] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
No Suggested Reading articles found!