Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(12): 124702    DOI: 10.1088/1674-1056/20/12/124702
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Direct numerical simulation study of the interaction between the polymer effect and velocity gradient tensor in decaying homogeneous isotropic turbulence

Cai Wei-Hua(蔡伟华),Li Feng-Chen(李凤臣), and Zhang Hong-Na(张红娜)
School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
Abstract  Direct numerical simulation of decaying homogeneous isotropic turbulence (DHIT) of a polymer solution is performed. In order to understand the polymer effect on turbulence or additive-turbulence interaction, we directly investigate the influence of polymers on velocity gradient tensor including vorticity and strain. By visualizing vortex tubes and sheets, we observe a remarkable inhibition of vortex structures in an intermediate-scale field and a small-scale field but not for a large scale field in DHIT with polymers. The geometric study indicates a strong relevance among the vorticity vector, rate-of-strain tensor, and polymer conformation tensor. Joint probability density functions show that the polymer effect can increase "strain generation resistance" and "vorticity generation resistance", i.e., inhibit the generation of vortex sheets and tubes, ultimately leading to turbulence inhibition effects.
Keywords:  decaying homogeneous isotropic turbulence      turbulent drag-reducing flow      velocity gradient tensor      direct numerical simulation  
Received:  04 June 2011      Revised:  13 July 2011      Accepted manuscript online: 
PACS:  47.27.ek (Direct numerical simulations)  
  47.27.Gs (Isotropic turbulence; homogeneous turbulence)  
  47.32.C- (Vortex dynamics)  
  47.50.-d (Non-Newtonian fluid flows)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10872060) and the Fundamental Research Funds for the Central Universities (Grant No. HIT.BRET2.2010008).

Cite this article: 

Cai Wei-Hua(蔡伟华),Li Feng-Chen(李凤臣), and Zhang Hong-Na(张红娜) Direct numerical simulation study of the interaction between the polymer effect and velocity gradient tensor in decaying homogeneous isotropic turbulence 2011 Chin. Phys. B 20 124702

[1] Toms B A 1949 Proceedings of the First International Congress of Rheology (Amsterdam: North Holland) p. 135
[2] Lumley J L 1973 J. Polymer Sci. Macrom. Rew. 7 263
[3] Ptasinski P K, Boersma B J, Nieuwstadt F T M, Hulsen M A, van den Brule B H A A and Hunt J C R 2003 J. Fluid Mech. 490 251
[4] Luchik T S and Tiederman W G 1988 J. Fluid Mech. 190 241
[5] Den Toonder J M J, Hulsen M A, Kuiken G D C and Nieuwstadt F T M 1997 J. Fluid Mech. 337 193
[6] Li F C, Kawaguchi Y, Hishida K and Oshima M 2006 Exps. Fluids 40 218
[7] Sureshkumar R, Beris A N and Handler A H 1997 Phys. Fluids 9 743
[8] Dimitropoulos C D, Sureshkumar R and Beris A N 1998 J. Non-Newtonian Fluid Mech. 79 433
[9] Friehe C A and Schwarz W H 1970 J. Fluid Mech. 44 173
[10] McComb W D, Allan J and Greated C A 1977 Phys. Fluids 20 873
[11] van Doorn E, White C M and Sreenivasan K R 1999 Phys. Fluids 8 2387
[12] Cadot O, Boon D and Douady S 1998 Phys. Fluids 10 426
[13] Liberzon A, Guala M, Lüthi, Kinzelbach W and Tsinober A 2005 Phys. Fluids 17 031707
[14] Liberzon A, Guala M, Kinzelbach and Tsinober A 2006 Phys. Fluids 18 125101
[15] Crawford A M, Mordant N, Xu H T and Bodenschatz E 2008 New J. Phys. 10 123015
[16] Ouellette N T, Xu H T and Bodenschatz E 2009 J. Fluid Mech. 629 375
[17] Tabor M and de Gennes P G 1986 Europhys. Lett. 2 519
[18] de Gennes P G 1986 Physica A 140 9
[19] de Angelis E, Casciola C M, Benzi R and Piva R 2005 J. Fluid Mech. 531 1
[20] Kalelkar C, Govindarajan R and Pandit R 2005 Phys. Rev. E 72 017301
[21] Perlekar P, Mitra D and Pandit R 2006 Phys. Rev. Lett. 97 264501
[22] Berti S, Bistagnino A, Boffetta G, Celani A and Musacchio S 2006 Europhys. Lett. 76 63
[23] Jin S 2007 Numerical Simulations of a Dilute Polymer Solution in Isotropic Turbulence Ph. D. Thesis (New York: The Cornell University)
[24] Cai W H, Li F C and Zhang H N 2010 J. Fluid Mech. 665 334
[25] Sagaut P and Cambon C 2008 Homogeneous Turbulence Dynamics (New York: Cambridge University Press) p. 112
[26] Taylor G I 1938 Proc. Roy. Soc. A 164 15
[27] Kolmogorov A N 1941 Dokl. Akad. Nauk SSSR 30 9; reprinted in Proc. Roy. Soc. Lond. A 1991 9 434
[28] Tennekes H and Lumley J L 1972 A First Course in Turbulence (Cambridge, Massachusetts: MIT Press) p. 103
[29] Tsinober A 2000 paper appearing in Turbulence Structure and Vortex Dynamics by Hunt J C R and Vassilicos J C (New York: Cambridge University Press) p. 164
[30] Siggia E D 1981 J. Fluid Mech. 107 375
[31] Douady S, Couder Y and Brachet M E 1991 Phys. Rev. Lett. 67 983
[32] Jimenez J, Wray A A, Saffman P G and Rogallo R S 1993 J. Fluid Mech. 255 65
[33] Rogers M M and Moser R D 1994 Phys. Fluids 6 903
[34] Robinson S K 1991 Ann. Rev. Fluid Mech. 23 601
[35] Adrian R J, Meinhart C D and Tomkins C D 2000 J. Fluid Mech. 422 1
[36] Chong M S, Perry A E and Cantwell B J 1990 Phys. Fluids 2 765
[37] Chen J H, Chong M S, Soria J, Sondergaard R, Perry A E, Rogers M, Moser R and Cantwell B J Proceedings of the 1990 CTR Summer Program, Stanford, CA, 1990 p. 139
[38] Mart'hin J, Ooi A, Chong M S and Soria J 1998 Phys. Fluids 10 2336
[39] Nomura K and Post G 1998 J. Fluid Mech. 377 65
[40] Soria J, Sondergaard R, Cantwell B J, Chong M S and Perry A E 1994 Phys. Fluids 6 871
[41] Blackburn H, Mansour N and Cantwell B 1996 J. Fluid Mech. 310 269
[42] Tsinober A 1998 Eur. J. Mech. B: Fluids 17 421
[43] Ashurst W T, Kerstein A R, Kerr R M and Gibson C H 1987 Phys. Fluids 30 2343
[44] Vincent A and Meneguzzi M 1991 J. Fluid Mech. 225 1
[45] Tsinober A, Kit E and Dracos T 1992 J. Fluid Mech. 242 169
[46] Jiménez J 1992 Phys. Fluids 4 652
[47] Kawaguchi Y, Segawa T, Feng Z P and Li P W 2002 Int. J. Heat and Fluid Flow 23 700
[48] Kim K, Li C F, Sureshkumar R, Balachandar S and Adrian R J 2007 J. Fluid Mech. 584 281
[49] Kim K and Sirviente A I 2005 Exps. Fluids 38 739
[50] Sibilla S and Beretta C P 2005 Fluid Dyn. Res. 37 183
[51] Jeong J and Hussain F 1995 J. Fluid Mech. 285 69
[52] Samanta G, Oxberry G, Beris A, Handler R and Housiadas K 2008 J. Turbul. 9 1
[53] Cai W H, Li F C, Zhang H N, Li X B, Yu B, Wei J J, Kawaguchi Y and Hishida K 2009 Phys. Fluids 21 115103
[54] Gyr A and Tsinober A 1996 Proceedings of the Sixth European Turbulence Conference Lausanne, Switzerland, 1996 p. 449
[55] Watanabe T and Gotoh T 2010 Phys. Rev. E 81 066301
[56] Rogallo R S 1981 Technical Report No. 81315, NASA
[57] Canuto C, Hussaini M Y, Quarteroni A and Zang T A J 1988 Spectral Methods in Fluid Dynamics (New York: Spring-Verlag) p. 505
[58] Vaithianathan T, Robert A, Brasseur J G and Collins L R 2006 J. Non-Newtonian Fluid Mech. 140 3
[59] Hunt J C R, Wray A A and Moin P 1988 Center for Turbulence Research, Report CTR-S88 p. 193
[60] Perry A E and Chong M S 1987 Ann. Rev. Fluid Mech. 19 125
[61] ZhouJ, Adrian R J, Balachandar S and Kendall T M 1999 J. Fluid Mech. 387 353
[62] Abdel K W, Izawa S, Xiong A K and Fukunishi Y 2006 Prog. Comput. Fluid Dyn. 6 403
[63] Alfonsi G and Primavera L 2009 Flow Turbul. & Combust 83 61
[64] Dubief Y and Delcayre F 2000 J. Turbul. 11 1
[65] Tanaka M and Kida S 1993 Phys. Fluids 5 2079
[66] Horiuti K and Takagi Y 2001 Phys. Fluids 13 3756
[67] Horiuti K and Takagi Y 2005 Phys. Fluids 17 121703
[68] Moffatt H K, Kida S and Ohkitani K 1994 J. Fluid Mech. 259 241
[69] Horiuti K, Takagi Y and Abe S 2006 IUTAM Symposium on Elementary Vortices and Coherent Structures: Significance in Turbulence Dynamics 79 p. 13
[70] da Silva C B and Pereira J C F 2008 Phys. Fluids 21 055101
[1] Effects of Prandtl number in two-dimensional turbulent convection
Jian-Chao He(何建超), Ming-Wei Fang(方明卫), Zhen-Yuan Gao(高振源), Shi-Di Huang(黄仕迪), and Yun Bao(包芸). Chin. Phys. B, 2021, 30(9): 094701.
[2] Direct numerical simulation on relevance of fluctuating velocities and drag reduction in turbulent channel flow with spanwise space-dependent electromagnetic force
Dai-Wen Jiang(江代文), Hui Zhang(张辉), Bao-Chun Fan(范宝春), An-Hua Wang(王安华). Chin. Phys. B, 2019, 28(5): 054701.
[3] A new kind of hairpin-like vortical structure induced by cross-interaction of sinuous streaks in turbulent channel
Jian Li(李健), Gang Dong(董刚), Hui Zhang(张辉), Zhengshou Chen(陈正寿), Zhaode Zhang(张兆德). Chin. Phys. B, 2018, 27(8): 084701.
[4] Mechanism of controlling turbulent channel flow with the effect of spanwise Lorentz force distribution
Yang Han(韩洋), Hui Zhang(张辉), Bao-Chun Fan(范宝春), Jian Li(李健), Dai-Wen Jiang(江代文), Zi-Jie Zhao(赵子杰). Chin. Phys. B, 2017, 26(8): 084704.
[5] Characteristics and generation of elastic turbulence in a three-dimensional parallel plate channel using direct numerical simulation
Hong-Na Zhang(张红娜), Feng-Chen Li(李凤臣), Xiao-Bin Li(李小斌), Dong-Yang Li(李东阳), Wei-Hua Cai(蔡伟华), Bo Yu(宇波). Chin. Phys. B, 2016, 25(9): 094701.
[6] Direct numerical simulation of viscoelastic-fluid-based nanofluid turbulent channel flow with heat transfer
Yang Juan-Cheng (阳倦成), Li Feng-Chen (李凤臣), Cai Wei-Hua (蔡伟华), Zhang Hong-Na (张红娜), Yu Bo (宇波). Chin. Phys. B, 2015, 24(8): 084401.
[7] Direct numerical simulation of elastic turbulence and its mixing-enhancement effect in a straight channel flow
Zhang Hong-Na (张红娜), Li Feng-Chen (李凤臣), Cao Yang (曹阳), Kunugi Tomoaki, Yu Bo (宇波). Chin. Phys. B, 2013, 22(2): 024703.
No Suggested Reading articles found!