Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(11): 117802    DOI: 10.1088/1674-1056/20/11/117802
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Focusing a beam beyond the diffraction limit using a hyperlens-based device

Zheng Guo-Xing(郑国兴), Zhang Rui-Ying(张瑞瑛), Li Song(李松), He Ping-An(何平安), and Zhou Hui(周辉)
School of Electronic Information, Wuhan University, Wuhan 430079, China
Abstract  A super-focusing device composed of a focusing objective and a hyperlens is proposed to focus an incident plane wave into the deep subwavelength dimension. In the device, the objective converts the incident plane wave into a convergent one. The half cylindrical hyperlens can support high wave vector k modes propagating towards its core. So the convergent wave can be focused into an ultrasmall spot beyond the diffraction limit. The layout is proposed for the super-focusing device and its characteristics are investigated theoretically. Numerical simulations verify that the focused beams are confined in a spot with a diameter of 16.3 nm in the focal plane of the focusing objective with a numerical aperture of 0.6, which corresponds to a super-resolution spot of $\lambda_0$/23 ($\lambda_0$ is the wavelength in vacuum). The simulations confirm the effectiveness of the proposed device.
Keywords:  hyperlens      objective      super-focusing device      resolution  
Received:  14 April 2011      Revised:  23 June 2011      Accepted manuscript online: 
PACS:  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  42.79.Bh (Lenses, prisms and mirrors)  
  42.25.Bs (Wave propagation, transmission and absorption)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10904118), the Natural Science Foundation of Hubei Province, China (Grant No. 2009CDB211), and the Fundamental Research Funds for the Central Universities of China.

Cite this article: 

Zheng Guo-Xing(郑国兴), Zhang Rui-Ying(张瑞瑛), Li Song(李松), He Ping-An(何平安), and Zhou Hui(周辉) Focusing a beam beyond the diffraction limit using a hyperlens-based device 2011 Chin. Phys. B 20 117802

[1] Durant S, Liu Z W, Steele J M and Zhang X 2006 J. Opt. Soc. Am. B 23 2383
[2] Pendry J B 2000 Phys. Rev. Lett. 85 3966
[3] Fang N, Lee H, Sun C and Zhang X 2005 Science 308 534
[4] Melville D O S and Blaikie R J 2005 Opt. Express 13 2127
[5] Liu Z W, Fang N, Yen T J and Zhang X 2003 Appl. Phys. Lett. 83 5184
[6] Fang N, Liu Z W, Yen T J and Zhang X 2003 Opt. Express 11 682
[7] Lee H, Xiong Y, Fang N, Srituravanich W, Ambati M, Sun C and Zhang X 2005 New J. Phys. 7 1
[8] Liu Z W, Durant S, Lee H, Pikus Y, Fang N, Xiong Y, Sun C and Zhang X 2007 Nano Lett. 7 403
[9] Liu Z W, Durant S, Lee H, Pikus Y, Xiong Y, Sun C and Zhang X 2007 Opt. Express 15 6947
[10] Lee H, Liu Z W, Xiong Y, Sun C and Zhang X 2008 Solid State Commun. 146 202
[11] Chen J, Wang Q K and Li H H 2010 Chin. Phys. B 19 034202
[12] Jacob Z, Alekseyev L V and Narimanov E 2006 Opt. Express 14 8247
[13] Liu Z W, Lee H, Xiong Y, Sun C and Zhang X 2007 Science 315 1686
[14] Xiong Y, Liu Z W and Zhang X 2009 Appl. Phys. Lett. 94 203108
[15] Jacob Z, Alekseyev L V and Narimanov E 2007 J. Opt. Soc. Am. A 24 52
[16] Hu J G, Cao Y, Wang P, Lu Y H and Ming H 2008 Chin. Phys. Lett. 25 4151
[17] Lee H, Liu Z W, Xiong Y, Sun C and Zhang X 2007 Opt. Express 15 15886
[18] Milster T D, Jo J S and Hirota K 1999 Appl. Opt. 38 5046
[19] Terris A D, Mamin H J, Rugar D, Studenmund W R and Kino G S 1994 Appl. Phys. Lett. 65 388
[20] Wu Q, Feke G D, Grober R D and Ghislain L P 1999 Appl. Phys. Lett. 75 4064
[21] Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370
[22] Chen W, Thoreson M D, Ishii S, Kildishev A V and Shalaev V M 2010 Opt. Express 18 5124
[23] Smith E J, Liu Z W, Mei Y F and Schmidt O G 2009 Appl. Phys. Lett. 95 083104
[24] Dong X C, Du C L, Li S H, Wang C T and Fu Y Q 2005 Opt. Express 13 1353
[25] Shi L F, Du C L, Dong X C, Deng Q L and Luo X G 2007 Appl. Opt. 46 8346
[26] Du C L, Dong X C, Qiu C K, Deng Q L and Zhou C X 2004 Opt. Eng. 43 2595
[1] A probability theory for filtered ghost imaging
Zhong-Yuan Liu(刘忠源), Shao-Ying Meng(孟少英), and Xi-Hao Chen(陈希浩). Chin. Phys. B, 2023, 32(4): 044204.
[2] Quantitative ultrasound brain imaging with multiscale deconvolutional waveform inversion
Yu-Bing Li(李玉冰), Jian Wang(王建), Chang Su(苏畅), Wei-Jun Lin(林伟军), Xiu-Ming Wang(王秀明), and Yi Luo(骆毅). Chin. Phys. B, 2023, 32(1): 014303.
[3] Design optimization of broadband extreme ultraviolet polarizer in high-dimensional objective space
Shang-Qi Kuang(匡尚奇), Bo-Chao Li(李博超), Yi Wang(王依), Xue-Peng Gong(龚学鹏), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(7): 077802.
[4] A stopping layer concept to improve the spatial resolution of gas-electron-multiplier neutron detector
Jianjin Zhou(周建晋), Jianrong Zhou(周健荣), Xiaojuan Zhou(周晓娟), Lin Zhu(朱林), Jianqing Yang(杨建清), Guian Yang(杨桂安), Yi Zhang(张毅), Baowei Ding(丁宝卫), Bitao Hu(胡碧涛), Zhijia Sun(孙志嘉), Limin Duan(段利敏), and Yuanbo Chen(陈元柏). Chin. Phys. B, 2022, 31(5): 050702.
[5] Photon number resolvability of multi-pixel superconducting nanowire single photon detectors using a single flux quantum circuit
Hou-Rong Zhou(周后荣), Kun-Jie Cheng(程昆杰), Jie Ren(任洁), Li-Xing You(尤立星),Li-Liang Ying(应利良), Xiao-Yan Yang(杨晓燕), Hao Li(李浩), and Zhen Wang(王镇). Chin. Phys. B, 2022, 31(5): 057401.
[6] Quantum walk search algorithm for multi-objective searching with iteration auto-controlling on hypercube
Yao-Yao Jiang(姜瑶瑶), Peng-Cheng Chu(初鹏程), Wen-Bin Zhang(张文彬), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2022, 31(4): 040307.
[7] High resolution spectroscopy of Rb in magnetic field by far-detuning electromagnetically induced transparency
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Ming-Hao Cai(蔡明皓), Shu-Hang You(游书航), and Hong-Ping Liu(刘红平). Chin. Phys. B, 2022, 31(12): 123201.
[8] Near-field multiple super-resolution imaging from Mikaelian lens to generalized Maxwell's fish-eye lens
Yangyang Zhou(周杨阳) and Huanyang Chen(陈焕阳). Chin. Phys. B, 2022, 31(10): 104205.
[9] Collective excitations and quantum size effects on the surfaces of Pb(111) films: An experimental study
Yade Wang(王亚德), Zijian Lin(林子荐), Siwei Xue(薛思玮), Jiade Li(李佳德), Yi Li(李毅), Xuetao Zhu(朱学涛), and Jiandong Guo(郭建东). Chin. Phys. B, 2021, 30(7): 077308.
[10] Magnetic-resonance image segmentation based on improved variable weight multi-resolution Markov random field in undecimated complex wavelet domain
Hong Fan(范虹), Yiman Sun(孙一曼), Xiaojuan Zhang(张效娟), Chengcheng Zhang(张程程), Xiangjun Li(李向军), and Yi Wang(王乙). Chin. Phys. B, 2021, 30(7): 078703.
[11] Super-resolution imaging of low-contrast periodic nanoparticle arrays by microsphere-assisted microscopy
Qin-Fang Shi(石勤芳), Song-Lin Yang(杨松林), Yu-Rong Cao(曹玉蓉), Xiao-Qing Wang(王晓晴), Tao Chen(陈涛), and Yong-Hong Ye(叶永红). Chin. Phys. B, 2021, 30(4): 040702.
[12] High-resolution bone microstructure imaging based on ultrasonic frequency-domain full-waveform inversion
Yifang Li(李义方), Qinzhen Shi(石勤振), Ying Li(李颖), Xiaojun Song(宋小军), Chengcheng Liu(刘成成), Dean Ta(他得安), and Weiqi Wang(王威琪). Chin. Phys. B, 2021, 30(1): 014302.
[13] Improved spatial filtering velocimetry and its application in granular flow measurement
Ping Kong(孔平), Bi-De Wang(王必得), Peng Wang(王蓬), Zivkovic V, Jian-Qing Zhang(张建青). Chin. Phys. B, 2020, 29(7): 074201.
[14] Electronic structure and spatial inhomogeneity of iron-based superconductor FeS
Chengwei Wang(王成玮), Meixiao Wang(王美晓), Juan Jiang(姜娟), Haifeng Yang(杨海峰), Lexian Yang(杨乐仙), Wujun Shi(史武军), Xiaofang Lai(赖晓芳), Sung-Kwan Mo, Alexei Barinov, Binghai Yan(颜丙海), Zhi Liu(刘志), Fuqiang Huang(黄富强), Jinfeng Jia(贾金峰), Zhongkai Liu(柳仲楷), Yulin Chen(陈宇林). Chin. Phys. B, 2020, 29(4): 047401.
[15] Nanofabrication of 50 nm zone plates through e-beam lithography with local proximity effect correction for x-ray imaging
Jingyuan Zhu(朱静远), Sichao Zhang(张思超), Shanshan Xie(谢珊珊), Chen Xu(徐晨), Lijuan Zhang(张丽娟), Xulei Tao(陶旭磊), Yuqi Ren(任玉琦), Yudan Wang(王玉丹), Biao Deng(邓彪), Renzhong Tai(邰仁忠), Yifang Chen(陈宜方). Chin. Phys. B, 2020, 29(4): 047501.
No Suggested Reading articles found!