Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(4): 040307    DOI: 10.1088/1674-1056/ac2806
GENERAL Prev   Next  

Quantum walk search algorithm for multi-objective searching with iteration auto-controlling on hypercube

Yao-Yao Jiang(姜瑶瑶)1, Peng-Cheng Chu(初鹏程)1, Wen-Bin Zhang(张文彬)2, and Hong-Yang Ma(马鸿洋)1,†
1 School of Science, Qingdao University of Technology, Qingdao 266033, China;
2 School of Information and Control Engineering, Qingdao University of Technology, Qingdao 266033, China
Abstract  Shenvi et al. have proposed a quantum algorithm based on quantum walking called Shenvi-Kempe-Whaley (SKW) algorithm, but this search algorithm can only search one target state and use a specific search target state vector. Therefore, when there are more than two target nodes in the search space, the algorithm has certain limitations. Even though a multi-objective SKW search algorithm was proposed later, when the number of target nodes is more than two, the SKW search algorithm cannot be mapped to the same quotient graph. In addition, the calculation of the optimal target state depends on the number of target states m. In previous studies, quantum computing and testing algorithms were used to solve this problem. But these solutions require more Oracle calls and cannot get a high accuracy rate. Therefore, to solve the above problems, we improve the multi-target quantum walk search algorithm, and construct a controllable quantum walk search algorithm under the condition of unknown number of target states. By dividing the Hilbert space into multiple subspaces, the accuracy of the search algorithm is improved from pc=(1/2)-O(1/n) to pc=1-O(1/n). And by adding detection gate phase, the algorithm can stop when the amplitude of the target state becomes the maximum for the first time, and the algorithm can always maintain the optimal number of iterations, so as to reduce the number of unnecessary iterations in the algorithm process and make the number of iterations reach $ t_{\rm f}=(\pi /2)\sqrt{2^{n-2}} $.
Keywords:  multi-objective      quantum walk      search algorithm      accurate probability  
Received:  22 August 2021      Revised:  04 September 2021      Accepted manuscript online:  18 September 2021
PACS:  03.67.Ac (Quantum algorithms, protocols, and simulations)  
  02.70.-c (Computational techniques; simulations)  
  02.20.-a (Group theory)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11975132 and 61772295), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2019YQ01), and the Project of Shandong Provincial Higher Educational Science and Technology Program, China (Grant No. J18KZ012). Thanks to Chen Zhenyu, Yan Dandan, and Ma Yulin for their help in the numerical simulation experiment. Special thanks to the scholars who have made important contributions in quantum computing and quantum search algorithm.
Corresponding Authors:  Hong-Yang Ma     E-mail:  hongyang_ma@aliyun.com

Cite this article: 

Yao-Yao Jiang(姜瑶瑶), Peng-Cheng Chu(初鹏程), Wen-Bin Zhang(张文彬), and Hong-Yang Ma(马鸿洋) Quantum walk search algorithm for multi-objective searching with iteration auto-controlling on hypercube 2022 Chin. Phys. B 31 040307

[1] Steane A 1998 Rep. Prog. Phys. 61 117
[2] Orsucci D, Briegel H J and Dunjko V 2018 Quantum 2 105
[3] Grover L K 1996 Proceedings of the twenty-eighth annual ACM symposium on Theory of computing, July 1, 1996, New York, USA, pp. 212- 219
[4] Chakraborty S, Novo L, Ambainis A and Omar Y 2016 Phys. Rev. Lett. 116 100501
[5] Chakraborty S, Novo L, Di Giorgio S and Omar Y 2017 Phys. Rev. Lett. 119 220503
[6] Glos A, Krawiec A, Kukulski R and Puchala Z 2018 Quantum. Inf. Process. 17 1
[7] Berry S D and Wang J B 2011 Phys. Rev. A 83 042317
[8] Zähringer F, Kirchmair G, Gerritsma R, Solano E, Blatt R and Roos C F 2010 Phys. Rev. Lett. 104 100503
[9] Kempf A and Portugal R 2009 Phys. Rev. A 79 052317
[10] Sansoni L, Sciarrino F, Vallone G, Mataloni P, Crespi A, Ramponi R and Osellame R 2012 Phys. Rev. Lett. 108 010502
[11] Shenvi N, Kempe J and Whaley K B 2003 Phys. Rev. A 67 052307
[12] Potoček V, Gábris A, Kiss T and Jex I 2009 Phys. Rev. A 79 012325
[13] Zhu W N, Chen H W, Liu Z H and Xue X L 2014 International Conference in Swarm Intelligence, October 17-20, 2014, Hefei, China, pp. 357-364
[14] Long G L 2001 Phys. Rev. A 64 022307
[15] Hu X M, Huang C X, Sheng Y B, Zhou L, Liu B H, Guo Y and Guo G C 2021 Phys. Rev. Lett. 126 010503
[16] Zhou L, Sheng Y B and Long G L 2020 Sci. Bull. 65 12
[17] Zhou Z R, Sheng Y B, Niu P H, Yin L G, Long G L and Hanzo L 2020 Sci. China Phys. Mech. Astron. 63 230362
[18] Zhou N R, Huang L X, Gong L H and Zeng Q W 2020 Quantum. Inf. Process. 19 1
[19] Zhou N R, Zhu K N and Zou X F 2019 Ann. Phys-Berlin. 531 1800520
[20] Zhou N R, Zhu K N, Bi W and Gong L H 2019 Quantum. Inf. Process. 18 1
[21] Li H H, Gong L H and Zhou N R 2020 Chin. Phys. B 29 110304
[1] Quantum search of many vertices on the joined complete graph
Tingting Ji(冀婷婷), Naiqiao Pan(潘乃桥), Tian Chen(陈天), and Xiangdong Zhang(张向东). Chin. Phys. B, 2022, 31(7): 070504.
[2] Design optimization of broadband extreme ultraviolet polarizer in high-dimensional objective space
Shang-Qi Kuang(匡尚奇), Bo-Chao Li(李博超), Yi Wang(王依), Xue-Peng Gong(龚学鹏), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(7): 077802.
[3] Efficient quantum private comparison protocol based on one direction discrete quantum walks on the circle
Jv-Jie Wang(王莒杰), Zhao Dou(窦钊), Xiu-Bo Chen(陈秀波), Yu-Ping Lai(赖裕平), and Jian Li(李剑). Chin. Phys. B, 2022, 31(5): 050308.
[4] Disorder in parity-time symmetric quantum walks
Peng Xue(薛鹏). Chin. Phys. B, 2022, 31(1): 010311.
[5] Effects of initial states on the quantum correlations in the generalized Grover search algorithm
Zhen-Yu Chen(陈祯羽), Tian-Hui Qiu(邱田会), Wen-Bin Zhang(张文彬), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2021, 30(8): 080303.
[6] Quantum walk under coherence non-generating channels
Zishi Chen(陈子石) and Xueyuan Hu(胡雪元). Chin. Phys. B, 2021, 30(3): 030305.
[7] State transfer on two-fold Cayley trees via quantum walks
Xi-Ling Xue(薛希玲) and Yue Ruan(阮越). Chin. Phys. B, 2021, 30(2): 020304.
[8] Quantum dynamics on a lossy non-Hermitian lattice
Li Wang(王利), Qing Liu(刘青), and Yunbo Zhang(张云波). Chin. Phys. B, 2021, 30(2): 020506.
[9] High winding number of topological phase in non-unitary periodic quantum walk
Yali Jia(贾雅利) and Zhi-Jian Li(李志坚). Chin. Phys. B, 2021, 30(10): 100301.
[10] Probe of topological invariants using quantum walks of a trapped ion in coherent state space
Ya Meng(蒙雅), Feng Mei(梅锋), Gang Chen(陈刚), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(7): 070501.
[11] A two-dimensional quantum walk driven by a single two-side coin
Quan Lin(林泉), Hao Qin(秦豪) Kun-Kun Wang(王坤坤), Lei Xiao(肖磊), and Peng Xue(薛鹏). Chin. Phys. B, 2020, 29(11): 110303.
[12] Quantum intelligence on protein folding pathways
Wen-Wen Mao(毛雯雯), Li-Hua Lv(吕丽花), Yong-Yun Ji(季永运), You-Quan Li(李有泉). Chin. Phys. B, 2020, 29(1): 018702.
[13] Multi-objective strategy to optimize dithering technique for high-quality three-dimensional shape measurement
Ning Cai(蔡宁), Zhe-Bo Chen(陈浙泊), Xiang-Qun Cao(曹向群), Bin Lin(林斌). Chin. Phys. B, 2019, 28(10): 104210.
[14] The entanglement of deterministic aperiodic quantum walks
Ting-Ting Liu(刘婷婷), Ya-Yun Hu(胡亚运), Jing Zhao(赵静), Ming Zhong(钟鸣), Pei-Qing Tong(童培庆). Chin. Phys. B, 2018, 27(12): 120305.
[15] Transitionless driving on local adiabatic quantum search algorithm
Feng-guang Li(李风光), Wan-su Bao(鲍皖苏), Shuo Zhang(张硕), Xiang Wang(汪翔), He-liang Huang(黄合良), Tan Li(李坦), Bo-wen Ma(马博文). Chin. Phys. B, 2018, 27(1): 010308.
No Suggested Reading articles found!