Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(11): 118101    DOI: 10.1088/1674-1056/20/11/118101
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Stability, defect and electronic properties of graphane-like carbon-halogen compounds

Lu Di(陆地), Yang Yu-Rong(杨玉荣), Xiao Yang(肖杨), and Zhang Xiao-Yu(张晓禹)
College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Abstract  We perform first-principles total energy calculations to investigate the stabilities and the electronic structures of graphane-like structures of carbon-halogen compounds, where the hydrogen atoms in the graphane are substituted by halogen atoms. Three halogen elements, fluorine (F), chlorine (Cl) and bromine (Br), are considered, and the graphane-like structures are named as CF, CCl and CBr, respectively. It is found that for the single-atom adsorption, only the F adatom can be chemically adsorbed on the graphene. However, the stable graphane-like structures of CF, CCl and CBr can form due to the interaction between the halogen atoms. The carbon atoms in the stable CF, CCl and CBr compounds are in the sp3 hybridization, forming a hexagonal network similar to the graphane. The electronic band calculations show that CF and CCl are semiconductors with band gaps of 3.28 eV and 1.66 eV, respectively, while CBr is a metal. Moreover, the molecular dynamics simulation is employed to clarify the stabilities of CF and CCl. Those two compounds are stable at room temperature. A high temperature (≥1200 K) is needed to damage CF, while CCl is destroyed at 700 K. Furthermore, the effects of a vacancy on the structure and the electronic property of CF are discussed.
Keywords:  graphene      graphane      electronic properties      first-principles  
Received:  02 December 2010      Revised:  16 June 2011      Accepted manuscript online: 
PACS:  81.05.Zx (New materials: theory, design, and fabrication)  
  81.05.ue (Graphene)  
  73.22.Pr (Electronic structure of graphene)  
  63.20.dk (First-principles theory)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10874089), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2008398), and the Foundation of Jiangsu Innovation Program for Graduate Education, China (Grant No. CX08B 005Z).

Cite this article: 

Lu Di(陆地), Yang Yu-Rong(杨玉荣), Xiao Yang(肖杨), and Zhang Xiao-Yu(张晓禹) Stability, defect and electronic properties of graphane-like carbon-halogen compounds 2011 Chin. Phys. B 20 118101

[1] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[2] Katsnelson M I 2007 Mater. Today 10 20
[3] Kang C Y, Tang J, Li L M, Pan H B, Yan W S, Xu P S, Wei S Q, Chen X F and Xu X G 2011 Acta. Phys. Sin. 60 626 (in Chinese)
[4] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[5] Zhang Y, Tan J W, Stormer H I and Kim P 2005 Nature 438 201
[6] Qiang L, Cheng Z G, Li Z J, Wang Z H and Fang Y 2010 Chin. Phys. B 19 097307
[7] Wang G M, BelBruno J J, Kenny S D and Smith R 2004 Phys. Rev. B 69 195412
[8] Varns R and Strange P 2008 J. Phys.: Condens. Matter 20 225005
[9] Sevincli H, Topsakal M, Durgun E and Ciraci S 2008 Phys. Rev. B 77 195434
[10] Kevin T C, Neaton J B and Marvin L C 2008 Phys. Rev. B 77 235430
[11] Wu M, Liu E Z, Ge M Y and Jiang J Z 2009 Appl. Phys. Lett. 94 102505
[12] Harman J and Hway C K 2009 Phys. Rev. B 79 245416
[13] Boukhvalov D W 2008 Phys. Rev. B 77 035427
[14] Elias D C, Nair R R, Mohiuddin T M G, Morozov S V, Blake P, Halsall M P, Ferrari A C, Boukhvalov D W, Katsnelson M I, Giem A K and Novoselov K S 2009 Science 323 610
[15] Sofo J O, Chaudhari A S and Barber G D 2007 Phys. Rev. B 75 153401
[16] Watanabe N, Nakajima T and Touhara H 1988 Graphite Fluorides (Amsterdam: Elsevier)
[17] Nakajima T and Watanabe N 1991 Graphite Fluorides and Carbon-Fluorine Compounds (Boca Raton: CRC)
[18] Cheng S H, Zou K, Okino F, Gutierrez H R, Gupta A, Shen N, Eklund P C, Sofo J O and Zhu J 2010 Phys. Rev. B 81 205435
[19] Charlier J C, Gonze X and Michenaud J P 1993 Phys. Rev. B 47 16162
[2] Takagi Y and Kusakabe K 2002 Phys. Rev. B 65 121103
[21] Fujimoto H 1997 Carbon 35 1061
[22] Kurmaev E Z, Moewes A, Ederer D L, Ishii H, Seki K, Yanagihara M, Okino F and Touhara H 2001 Phys. Lett. A 288 340
[23] Zhou J, Liang Q F and Dong J M 2010 Carbon 48 1405
[24] Medeiros P V C, Mascarenhas A J S, Mota F B and Castilho C M C 2010 Nanotechnology 21 485701
[25] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys.: Condens. Matter 14 2717
[26] Vanderbilt D 1990 Phys. Rev. B 41 7892
[27] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[28] Wehling T O, Katsnelson M I and Lichtenstein A I 2009 Phys. Rev. B 80 085428
[29] Popov V N and Henrard L 2002 Phys. Rev. B 65 235415
[30] Liew K M, Wong C H, He X Q and Meguid S A 2004 Phys. Rev. B 69 115429
[31] Herrero C P and Ramirez R 2009 Phys. Rev. B 79 115429
[32] Liu P and Zhang Y W 2009 Appl. Phys. Lett. 94 231912
[33] Amara H, Latil S and Charlier J C 2007 Phys. Rev. B 76 115423
[34] Somnath B 2010 Phys. Rev. B 81 155416
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[4] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[5] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[6] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[7] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[8] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[9] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[10] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[11] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[12] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[13] First-principles study on β-GeS monolayer as high performance electrode material for alkali metal ion batteries
Meiqian Wan(万美茜), Zhongyong Zhang(张忠勇), Shangquan Zhao(赵尚泉), and Naigen Zhou(周耐根). Chin. Phys. B, 2022, 31(9): 096301.
[14] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[15] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
No Suggested Reading articles found!