Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(4): 040702    DOI: 10.1088/1674-1056/abcf48
GENERAL Prev   Next  

Super-resolution imaging of low-contrast periodic nanoparticle arrays by microsphere-assisted microscopy

Qin-Fang Shi(石勤芳)1, Song-Lin Yang(杨松林)2, Yu-Rong Cao(曹玉蓉)1, Xiao-Qing Wang(王晓晴)1, Tao Chen(陈涛)3,†, and Yong-Hong Ye(叶永红)1,‡
1 Department of Physics, Nanjing Normal University, Nanjing 210023, China; 2 Advanced Photonics Center, Southeast University, Nanjing 210096, China; 3 Jiangsu Provincial Key Laboratory of Advanced Robotics, Soochow University, Suzhou 215123, China
Abstract  We use the label-free microsphere-assisted microscopy to image low-contrast hexagonally close-packed polystyrene nanoparticle arrays with diameters of 300 and 250 nm. When a nanoparticle array is directly placed on a glass slide, it cannot be distinguished. If a 30-nm-thick Ag film is deposited on the surface of a nanoparticle array, the nanoparticle array with nanoparticle diameters of 300 and 250 nm can be distinguished. In addition, the Talbot effect of the 300-nm-diameter nanoparticle array is also observed. If a nanoparticle sample is assembled on a glass slide deposited with a 30-nm-thick Ag film, an array of 300-nm-diameter nanoparticles can be discerned. We propose that in microsphere-assisted microscopy imaging, the resolution can be improved by the excitation of surface plasmon polaritons (SPPs) on the sample surface or at the sample/substrate interface, and a higher near-field intensity due to the excited SPPs would benefit the resolution improvement. Our study of label-free super-resolution imaging of low-contrast objects will promote the applications of microsphere-assisted microscopy in life sciences.
Keywords:  super-resolution      microsphere      optical microscopy      surface plasmon polariton  
Received:  05 September 2020      Revised:  26 October 2020      Accepted manuscript online:  01 December 2020
PACS:  07.60.Pb (Conventional optical microscopes)  
  42.79.Bh (Lenses, prisms and mirrors)  
  87.64.M- (Optical microscopy)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61673287).
Corresponding Authors:  Corresponding author. E-mail: chent@suda.edu.cn Corresponding author. E-mail: yeyonghong@njnu.edu.cn   

Cite this article: 

Qin-Fang Shi(石勤芳), Song-Lin Yang(杨松林), Yu-Rong Cao(曹玉蓉), Xiao-Qing Wang(王晓晴), Tao Chen(陈涛), and Yong-Hong Ye(叶永红) Super-resolution imaging of low-contrast periodic nanoparticle arrays by microsphere-assisted microscopy 2021 Chin. Phys. B 30 040702

1 Hell S W and Wichmann J 1994 Opt. Lett. 19 780
2 Betzig E, Patterson G H, Sougrat R, Lindwasser O W, Olenych S, Bonifacino J S, Davidson M W, Lippincott-Schwartz J and Hess H F 2006 Science 313 1642
3 Rust M J, Bates M and Zhuang X 2006 Nat. Methods 3 793
4 Gustafsson M G L 2000 J. Microsc. 198 82
5 Van P E, Akbulut D, Bertolotti J, Vos W L, Lagendijk A and Mosk A 2011 Phys. Rev. Lett. 106 193905
6 Liu Z, Durant S, Lee H, Pikus Y, Xiong Y, Sun C and Zhang X 2007 Opt. Express 15 6947
7 Liu Z, Lee H, Xiong Y, Sun C and Zhang X 2007 Science 315 1686
8 Hou B, Xie M, He R, Ji M, Trummer S, Fink R H and Zhang L 2017 Sci. Rep. 7 13789
9 Wang Z, Guo W, Li L, Luk'yanchuk B, Khan A, Liu Z, Chen Z and Hong M 2011 Nat. Commun. 2 218
10 Hao X, Kuang C, Liu X, Zhang H and Li Y 2011 Appl. Phys. Lett. 99 203102
11 Wang F, Liu L, Yu H, Wen Y, Yu P, Liu Z, Wang Y and Li W J 2016 Nat. Commun. 7 13748
12 Darafsheh A, Guardiola C, Palovcak A, Finlay J C and Càrabe A 2015 Opt. Lett. 40 5
13 Yang H, Moullan N, Auwerx J and Gijs M A M 2014 Small 10 1712
14 Allen K W, Farahi N, Li Y, Limberopoulos N I, Walker D E, Urbas A M and Astratov V N 2015 Opt. Express 23 24484
15 Zhou Y, Tang Y, Deng Q, Zhao L and Hu S 2017 Appl. Phys. Express 10 082501
16 Guo M, Ye Y, Hou J and Du B 2016 Appl. Phys. B 122 1
17 Astratov V N, Limberopoulos N I and Urbas A2017 US patent No. 9835870
18 Maslov A V and Astratov V N2019 Phys. Rev. Appl. 11 064004
19 Allen K W2014 Waveguide, Photodetector, and Imaging Applications of Microspherical Photonics (Ph.D. Dissertation)(University of North Carolina)
20 Perrin S, Li H, Badu K, Comparon T, Quaranta G, Messaddeq N, Lemercier N, Montgomery P, Vonesch J L and Lecler S 2019 Phys. Status Solidi RRL 13 1800445
21 Bolin F P, Preuss L E, Taylor R C and Ference R J 1989 Appl. Opt. 28 2297
22 Bezryadina A, Li J, Zhao J, Kothambawala A, Ponsetto J, Huang E, Wang J and Liu Z 2017 Nanoscale 9 14907
23 Brettin A, Abolmaali F, Blanchette K F, McGinnis C L, Nesmelov Y E, Limberopoulos N I, Walker D E, Anisimov I, Urbas A M, Poffo L, Maslov A V and Astratov V N 2019 Appl. Phys. Lett. 114 131101
24 Darafsheh A2013 Optical super-resolution and periodical focusing effects by dielectric microspheres (Ph.D. Dissertation)(University of North Carolina)
25 Darafsheh A 2016 Ann. Phys. (Berlin) 528 898
26 Li L, Guo W, Yan Y, Lee S and Wang T2013 Sci. Appl. 2 104
27 Yang S, Cao Y, Shi Q, Wang X, Chen T, Wang J and Ye Y 2019 J. Phys. Chem. C 123 28353
28 Astratov V N and Darafsheh A2013 US patent No. 9726874
29 Darafsheh A, Walsh G F, Negro L D and Astratov V N 2012 Appl. Phys. Lett. 101 141128
30 Regan C J, Rodriguez R, Gourshetty S C, Luis Grave de Peralta and Bernussi A A 2012 Opt. Express 20 20827
31 Farcau C 2019 Sci. Rep. 9 3683
32 Lòpez-Garc\'ía M, Galisteo-Lòpez J F, Lòpez C and Garc\'ía-Mart\'ín A 2012 Phys. Rev. B 85 235145
33 Lòpez-Garc\'ía M, Galisteo-Lòpez J F, Blanco A, Sànchez-Marcos J, Lòpez C and Garc\'ía-Mart\'ín A 2010 Small 6 1757
34 Horstmeyer R, Heintzmann R, Popescu G, Waller L and Yang C 2016 Nat. Photon. 10 68
[1] A probability theory for filtered ghost imaging
Zhong-Yuan Liu(刘忠源), Shao-Ying Meng(孟少英), and Xi-Hao Chen(陈希浩). Chin. Phys. B, 2023, 32(4): 044204.
[2] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[3] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[4] Deep learning facilitated whole live cell fast super-resolution imaging
Yun-Qing Tang(唐云青), Cai-Wei Zhou(周才微), Hui-Wen Hao(蒿慧文), and Yu-Jie Sun(孙育杰). Chin. Phys. B, 2022, 31(4): 048705.
[5] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[6] Near-field multiple super-resolution imaging from Mikaelian lens to generalized Maxwell's fish-eye lens
Yangyang Zhou(周杨阳) and Huanyang Chen(陈焕阳). Chin. Phys. B, 2022, 31(10): 104205.
[7] Improvement of femtosecond SPPs imaging by two-color laser photoemission electron microscopy
Chun-Lai Fu(付春来), Zhen-Long Zhao(赵振龙), Bo-Yu Ji(季博宇), Xiao-Wei Song(宋晓伟), Peng Lang(郎鹏), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(10): 107103.
[8] Two-color laser PEEM imaging of horizontal and vertical components of femtosecond surface plasmon polaritons
Zhen-Long Zhao(赵振龙), Bo-Yu Ji(季博宇), Lun Wang(王伦), Peng Lang(郎鹏), Xiao-Wei Song(宋晓伟), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(10): 107104.
[9] Single-beam leaky-wave antenna with wide scanning angle and high scanning rate based on spoof surface plasmon polariton
Huan Jiang(蒋欢), Xiang-Yu Cao(曹祥玉), Tao Liu(刘涛), Liaori Jidi(吉地辽日), and Sijia Li(李思佳). Chin. Phys. B, 2022, 31(10): 104101.
[10] Mode splitting and multiple-wavelength managements of surface plasmon polaritons in coupled cavities
Ping-Bo Fu(符平波) and Yue-Gang Chen(陈跃刚). Chin. Phys. B, 2022, 31(1): 014216.
[11] High-confinement ultra-wideband bandpass filter using compact folded slotline spoof surface plasmon polaritons
Xue-Wei Zhang(张雪伟), Shao-Bin Liu(刘少斌), Ling-Ling Wang(王玲玲), Qi-Ming Yu (余奇明), Jian-Lou(娄健), and Shi-Ning Sun(孙世宁). Chin. Phys. B, 2022, 31(1): 014102.
[12] Surface plasmon polaritons frequency-blue shift in low confinement factor excitation region
Ling-Xi Hu(胡灵犀), Zhi-Qiang He(何志强), Min Hu(胡旻), and Sheng-Gang Liu(刘盛纲). Chin. Phys. B, 2021, 30(8): 084102.
[13] Bound states in the continuum on perfect conducting reflection gratings
Jianfeng Huang(黄剑峰), Qianju Song(宋前举), Peng Hu(胡鹏), Hong Xiang(向红), and Dezhuan Han(韩德专). Chin. Phys. B, 2021, 30(8): 084211.
[14] High sensitive chiral molecule detector based on the amplified lateral shift in Kretschmann configuration involving chiral TDBCs
Song Wang(王松), Qihui Ye(叶起惠), Xudong Chen(陈绪栋), Yanzhu Hu(胡燕祝), and Gang Song(宋钢). Chin. Phys. B, 2021, 30(6): 067301.
[15] Design and verification of a broadband highly-efficient plasmonic circulator
Jianfei Han(韩建飞), Shu Zhen(甄姝), Weihua Wang(王伟华), Kui Han(韩奎), Haipeng Li(李海鹏), Lei Zhao(赵雷), and Xiaopeng Shen(沈晓鹏). Chin. Phys. B, 2021, 30(3): 034102.
No Suggested Reading articles found!