Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(7): 077308    DOI: 10.1088/1674-1056/abfbcd
RAPID COMMUNICATION Prev   Next  

Collective excitations and quantum size effects on the surfaces of Pb(111) films: An experimental study

Yade Wang(王亚德)1,2, Zijian Lin(林子荐)1,2, Siwei Xue(薛思玮)1,2, Jiade Li(李佳德)1,2, Yi Li(李毅)1,2, Xuetao Zhu(朱学涛)1,2,3,†, and Jiandong Guo(郭建东)1,2,3,‡
1 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  Pb(111) film is a special system that exhibits strong quantum size effects in many electronic properties. The collective excitations, i.e., plasmons, in Pb(111) films are also expected to show signatures of the quantum size effect. Here, using high-resolution electron energy loss spectroscopy, we measured the plasmons on the surface of Pb(111) films with different film thicknesses and analyzed the plasmon dispersions. One surface plasmon branch exhibits prominent damping in the small momentum range, which can be attributed to the interaction between the top and bottom interfaces of the Pb(111) films. With the film thickness increasing, the critical momentum characterizing the damping in Pb(111) films decays not only much slower in Pb(111) films than in other metal films, and even in films with the thickness up to 40 monolayers the damping still exists. The slow decay of the surface plasmon damping, manifesting the strong quantum size effect in Pb(111) films, might be related to the strong nesting of the Fermi surface along the (111) direction.
Keywords:  Pb films      plasmons      quantum size effects      high-resolution electron energy loss spectroscopy  
Received:  12 April 2021      Revised:  24 April 2021      Accepted manuscript online:  27 April 2021
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  73.21.-b (Electron states and collective excitations in multilayers, quantum wells, mesoscopic, and nanoscale systems)  
  68.49.Jk (Electron scattering from surfaces)  
  68.47.De (Metallic surfaces)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874404 and 11634016), the National Key Research and Development Program of China (Grant Nos. 2016YFA0302400, 2016YFA0202300, and 2017YFA0303600), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB33000000). Xuetao Zhu was partially supported by the Youth Innovation Promotion Association of Chinese Academy of Sciences.
Corresponding Authors:  Xuetao Zhu, Jiandong Guo     E-mail:  xtzhu@iphy.ac.cn;jdguo@iphy.ac.cn

Cite this article: 

Yade Wang(王亚德), Zijian Lin(林子荐), Siwei Xue(薛思玮), Jiade Li(李佳德), Yi Li(李毅), Xuetao Zhu(朱学涛), and Jiandong Guo(郭建东) Collective excitations and quantum size effects on the surfaces of Pb(111) films: An experimental study 2021 Chin. Phys. B 30 077308

[1] Wang Y, Plummer E W and Kempa K 2011 Adv. Phys. 60 799
[2] Chen R K, Yang C, Jia Y P, Guo L W and Chen J N 2019 Chin. Phys. B 28 117302
[3] Andrew P and Barnes W L 2004 Science 306 1002
[4] Arvind, Vengurlekara S and Ishihara T 2005 Appl. Phys. Lett. 87 091118
[5] Maniyara R A, Rodrigo D, Yu R, Canet-Ferrer J, Ghosh D S, Yongsunthon R, Baker D E, Rezikyan A, Abajo F J G D and Pruneri V 2019 Nat. Photon. 13 328
[6] Suo P F, Mao L and Xu H X 2020 Chin. Phys. Lett. 37 017801
[7] Wang Y L, Zhao B, Min C J, Zhang Y Q, Yang J J, Guo C L and Yuan X C 2020 Chin. Phys. B 29 027302
[8] Peng Z X, Shi Z, Min S H, Quan C Z, Jun Q, Wen X S, Jun Z and Gao D H 2019 Acta Phys. Sin. 68 247301 (in Chinese)
[9] Yang Y, Zhang G H and Dai X Y 2020 Chin. Phys. B 29 057302
[10] Lin W H, Cao E, Zhang L Q, Xu X F, Song Y Z, Liang W J and Sun M T 2018 Nanoscale 10 5482
[11] Cong S, Liu X H, Jiang Y X, Zhang W and Zhao Z G 2020 The Innovation 1 100051
[12] Politano A and Chiarello G 2015 Prog. Surf. Sci. 90 144
[13] Zhao X K, Yuan Y, Lang P L, Guo H L, Shen X, Wang Y G and Yu R C 2016 Chin. Phys. Lett. 33 026802
[14] Feibelman P J and Hamann D R 1984 Phys. Rev. B 29 6463
[15] Trivedi N and Ashcroft N W 1988 Phys. Rev. B 38 12298
[16] Politano A, Formoso V, Colavita E and Chiarello G 2009 Phys. Rev. B 79 045426
[17] Yu Y H, Jiang Y, Tang Z, Guo Q L, Jia J F, Xue Q K, Wu K H and Wang E G 2005 Phys. Rev. B 72 205405
[18] Yuan Z and Gao S W 2006 Phys. Rev. B 73 155411
[19] Qin H J, Jiang Y, Zhang G H and Wu K H 2013 Appl. Phys. Lett. 102 051605
[20] Zielasek V, Rönitz N, Henzler M and Pfnür H 2006 Phys. Rev. Lett. 96 196801
[21] Yuan Z and Gao S W 2008 Surf. Sci. 602 460
[22] Özer M M, Jia Y, Wu B, Zhang Z Y and Weitering H H 2005 Phys. Rev. B 72 113409
[23] Mans A, Dil J H, Ettema A R H F and Weitering H H 2005 Phys. Rev. B 72 155442
[24] Guo Y, Zhang Y F, Bao X Y, Han T Z, Tang Z, Zhang L X, Zhu W G, Wang E G, Niu Q, Qiu Z Q, Jia J F, Zhao Z X and Xue Q K 2004 Science 306 1915
[25] Özer M M, Thompson J R and Weitering H H 2006 Nat. Phys. 2 173
[26] Zhang Y F, Jia J F, Han T Z, Tang Z, Shen Q T, Guo Y, Qiu Z Q and Xue Q K 2005 Phys. Rev. Lett. 95 096802
[27] Fu Y S, Ji S H, Chen X, Ma X C, Wu R, Wang C C, Duan W H, Qiu X H, Sun B, Zhang P, Jia J F and Xue Q K 2007 Phys. Rev. Lett. 99 256601
[28] Zhang Z Y, Niu Q and Shih C K 1998 Phys. Rev. Lett. 80 5381
[29] Wu B and Zhang Z Y 2008 Phys. Rev. B 77 035410
[30] Gavioli L, Kimberlin K R, Tringides M C, Wendelken J F and Zhang Z Y 1999 Phys. Rev. Lett. 82 129
[31] Zhu X T, Cao Y W, Zhang S Y, Jia X, Guo Q L, Yang F, Zhu L F, Zhang J D, Plummer E W and Guo J D 2015 Rev. Sci. Instrum. 86 083902
[32] Ganz E, Hwang I S, Xiong F L, Theiss S K and Golovchenko J 1991 Surf. Sci. 257 259
[33] Ibach and Mills D L 1982 Electron energy loss spectroscopy and surface vibrations (New York: Academic) p. 1
[34] Li Y, Zhang J Y, Zhao B, Xue Y and Yang Z Q 2019 Phys. Rev. B 99 195402
[35] Yu X L, Huang L and Wu J S 2017 Phys. Rev. B 95 125113
[36] Sassmannshausen J, Kubetzka A, Hsu P J, Bergmann K V and Wiesendanger R 2018 Phys. Rev. B 98 144443
[37] Bihlmayer G, Sassmannshausen J, Kubetzka A, Blügel S, Bergmann K V and Wiesendanger R 2020 Phys. Rev. Lett. 124 126401
[38] Zubizarreta X, Silkin V M and Chulkov E V 2013 Phys. Rev. B 87 115112
[39] Zubizarreta X, Silkin V M and Chulkov E V 2014 Phys. Rev. B 90 165121
[40] Teng A 2014 Quantum Tuning of Plasmons in Ultrathin Metal Films, Ph. D. Dissertation (Knoxville: University of Tennessee)
[41] Zubizarreta X, Chulkov E V, Chernov I P, Vasenko A S, Aldazabal I and Silkin V M 2017 Phys. Rev. B 95 235405
[42] Teng A, Kempa K, Özer M M, Hus S M, Snijders P C, Lee G and Weitering H H 2014 Phys. Rev. B 90 115416
[43] Liebsch A 1987 Phys. Rev. B 36 7378
[44] Liebsch A 1997 Elementary Excitation on Metal Surfaces (New York: Plenum) p. 92
[45] Jia Y, Wu B, Li C, Einstein T L, Weitering H H and Zhang Z Y 2010 Phys. Rev. Lett. 105 066101
[46] Yakes M and Tringides M C 2011 J. Phys. Chem. A 115 7096
[47] Seehofer L, Falkenberg G, Daboul D and Johnson R L 1995 Phys. Rev. B 51 13503
[48] Yuan Z, Jiang Y, Gao Y, Käll M and Gao S W 2011 Phys. Rev. B 83 165452
[1] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
[2] Surface plasmon polaritons induced reduced hacking
Bakhtawar, Muhammad Haneef, and Humayun Khan. Chin. Phys. B, 2021, 30(6): 064215.
[3] Quantum plasmon enhanced nonlinear wave mixing in graphene nanoflakes
Hanying Deng(邓寒英), Changming Huang(黄长明), Yingji He(何影记), and Fangwei Ye(叶芳伟). Chin. Phys. B, 2021, 30(4): 044213.
[4] Optical properties of several ternary nanostructures
Xiao-Long Tang(唐小龙), Xin-Lu Cheng(程新路), Hua-Liang Cao(曹华亮), and Hua-Dong Zeng(曾华东). Chin. Phys. B, 2021, 30(1): 017803.
[5] Enhanced circular dichroism of TDBC in a metallic hole array structure
Tiantian He(何田田), Qihui Ye(叶起惠), Gang Song(宋钢). Chin. Phys. B, 2020, 29(9): 097306.
[6] Quantization of electromagnetic modes and angular momentum on plasmonic nanowires
Guodong Zhu(朱国栋), Yangzhe Guo(郭杨喆), Bin Dong(董斌), Yurui Fang(方蔚瑞). Chin. Phys. B, 2020, 29(8): 087301.
[7] Surface plasmon polaritons generated magneto-optical Kerr reversal in nanograting
Le-Yi Chen(陈乐易), Zhen-Xing Zong(宗振兴), Jin-Long Gao(高锦龙), Shao-Long Tang(唐少龙), You-Wei Du(都有为). Chin. Phys. B, 2019, 28(8): 083302.
[8] Large-scale control of enhancement and quenching of photoluminescence for ZnSe/ZnS quantum dots and Ag nanoparticles in aqueous solution
Shaoyi Yin(殷少轶), Liming Liao(廖李明), Song Luo(罗松), Zhe Zhang(张喆), Xiaoyu Zhang(张晓宇), Jian Lu(鹿建), Zhanghai Chen(陈张海). Chin. Phys. B, 2019, 28(5): 057803.
[9] Strong coupling in silver-molecular J-aggregates-silver structure sandwiched between two dielectric media
Kunwei Pang(庞昆维), Haihong Li(李海红), Gang Song(宋钢), Li Yu(于丽). Chin. Phys. B, 2019, 28(12): 127301.
[10] Plasmon reflection reveals local electronic properties of natural graphene wrinkles
Runkun Chen(陈闰堃), Cui Yang(杨翠), Yuping Jia(贾玉萍), Liwei Guo(郭丽伟), Jianing Chen(陈佳宁). Chin. Phys. B, 2019, 28(11): 117302.
[11] Ultra-compact graphene plasmonic filter integrated in a waveguide
Baoxin Liao(廖宝鑫), Xiangdong Guo(郭相东), Hai Hu(胡海), Ning Liu(刘宁), Ke Chen(陈科), Xiaoxia Yang(杨晓霞), Qing Dai(戴庆). Chin. Phys. B, 2018, 27(9): 094101.
[12] Tunable graphene-based mid-infrared band-pass planar filter and its application
Somayyeh Asgari, Hossein Rajabloo, Nosrat Granpayeh, Homayoon Oraizi. Chin. Phys. B, 2018, 27(8): 084212.
[13] Resonant surface plasmons of a metal nanosphere treated as propagating surface plasmons
Yu-Rui Fang(方蔚瑞), Xiao-Rui Tian(田小锐). Chin. Phys. B, 2018, 27(6): 067302.
[14] Gap plasmon-enhanced photoluminescence of monolayer MoS2 in hybrid nanostructure
Le Yu(余乐), Di Liu(刘頔), Xiao-Zhuo Qi(祁晓卓), Xiao Xiong(熊霄), Lan-Tian Feng(冯兰天), Ming Li(李明), Guo-Ping Guo(郭国平), Guang-Can Guo(郭光灿), Xi-Feng Ren(任希锋). Chin. Phys. B, 2018, 27(4): 047302.
[15] Highly stable two-dimensional graphene oxide: Electronic properties of its periodic structure and optical properties of its nanostructures
Qin Zhang(张琴), Hong Zhang(张红), Xin-Lu Cheng(程新路). Chin. Phys. B, 2018, 27(2): 027301.
No Suggested Reading articles found!