Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(4): 047501    DOI: 10.1088/1674-1056/ab7800

Nanofabrication of 50 nm zone plates through e-beam lithography with local proximity effect correction for x-ray imaging

Jingyuan Zhu(朱静远)1, Sichao Zhang(张思超)1, Shanshan Xie(谢珊珊)1, Chen Xu(徐晨)1, Lijuan Zhang(张丽娟)2, Xulei Tao(陶旭磊)2, Yuqi Ren(任玉琦)2, Yudan Wang(王玉丹)2, Biao Deng(邓彪)2, Renzhong Tai(邰仁忠)2, Yifang Chen(陈宜方)1
1 Nanolithography and Application Research Group, State Key Laboratory of Asic and System, School of Information Science and Engineering, Fudan University, Shanghai 200433, China;
2 Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China

High resolution Fresnel zone plates for nanoscale three-dimensional imaging of materials by both soft and hard x-rays are increasingly needed by the broad applications in nanoscience and nanotechnology. When the outmost zone-width is shrinking down to 50 nm or even below, patterning the zone plates with high aspect ratio by electron beam lithography still remains a challenge because of the proximity effect. The uneven charge distribution in the exposed resist is still frequently observed even after standard proximity effect correction (PEC), because of the large variety in the line width. This work develops a new strategy, nicknamed as local proximity effect correction (LPEC), efficiently modifying the deposited energy over the whole zone plate on the top of proximity effect correction. By this way, 50 nm zone plates with the aspect ratio from 4:1 up to 15:1 and the duty cycle close to 0.5 have been fabricated. Their imaging capability in soft (1.3 keV) and hard (9 keV) x-ray, respectively, has been demonstrated in Shanghai Synchrotron Radiation Facility (SSRF) with the resolution of 50 nm. The local proximity effect correction developed in this work should also be generally significant for the generation of zone plates with high resolutions beyond 50 nm.

Keywords:  Fresnel zone plates      electron beam lithography      local proximity effect correction      x-ray imaging      50 nm resolution  
Received:  12 December 2019      Revised:  12 February 2020      Accepted manuscript online: 
PACS:  75.75.Cd (Fabrication of magnetic nanostructures)  
  07.85.-m (X- and γ-ray instruments)  
  41.50.+h (X-ray beams and x-ray optics)  

Project supported by the National Natural Science Foundation of China (Grant No. U1732104), China Postdoctoral Science Foundation (Grant No. 2017M611443), and Shanghai STCSM2019-11-20 Grant, China (Grant No. 19142202700).

Corresponding Authors:  Yifang Chen     E-mail:

Cite this article: 

Jingyuan Zhu(朱静远), Sichao Zhang(张思超), Shanshan Xie(谢珊珊), Chen Xu(徐晨), Lijuan Zhang(张丽娟), Xulei Tao(陶旭磊), Yuqi Ren(任玉琦), Yudan Wang(王玉丹), Biao Deng(邓彪), Renzhong Tai(邰仁忠), Yifang Chen(陈宜方) Nanofabrication of 50 nm zone plates through e-beam lithography with local proximity effect correction for x-ray imaging 2020 Chin. Phys. B 29 047501

[1] Zhang Y H and Shi J R 2015 Chin. Phys. Lett. 32 37101
[2] He X M, Zhong W and Du Y W 2018 Acta Phys. Sin. 67 227501 (in Chinese)
[3] Huang Y H, Jiang D L, Zhang H, Chen Z M and Huang Z R 2017 Acta Phys. Sin. 66 017501 (in Chinese)
[4] Li J, Zhang H W, Li Y X, Li Q and Qin J F 2012 Acta Phys. Sin. 61 227501 (in Chinese)
[5] Mehran E, Shayesteh F S and Sheykhan M 2016 Chin. Phys. B 25 107504
[6] Xie Q, Wang W P, Xie Z, Zhan P, Li Z C and Zhang Z J 2015 Chin. Phys. B 24 057503
[7] Cai P, Chen H M and Xie J 2014 Chin. Phys. B 23 117504
[8] Pan D, Wang S L, Wang H L, Yu X Z, Wang X L and Zhao J H 2014 Chin. Phys. Lett. 31 078103
[9] Meng L R, Chen W M, Chen C P, Zhou H P and Peng Q 2010 Chin. Phys. Lett. 27 128101
[10] He L Z, Qin L R, Zhao J W, Yin Y Y, Yang Y and Li G Q 2016 Chin. Phys. B 25 086101
[11] Liu X L, Yang Y, Wu J P, Zhang Y F, Fan H M and Ding J 2015 Chin. Phys. B 24 127505
[12] Su Y K, Yan Z L, Wu X M, Liu H, Ren X and Yang H T 2015 Chin. Phys. B 24 107505
[13] Zuo W L, Zhao X, Xiong J F, Shan R X, Zhang M, Hu F X, Sun J R and Shen B G 2015 Chin. Phys. B 24 077103
[14] Kang H C, Maser J, Stephenson G B, Liu C, Conley R, Macrander A T and Vogt S 2006 Phys. Rev. Lett. 96 127401
[15] Sakdinawat A and Attwood D 2010 Nat. Photon. 4 840
[16] Doring F, Robisch A L, Eberl C, Osterhoff M, Ruhlandt A, Liese T, Schlenkrich F, Hoffmann S, Bartels M, Salditt T and Krebs H U 2013 Opt. Express 21 19311
[17] Mayer M, Keskinbora K, Grevent C, Szeghalmi A, Knez M, Weigand M, Snigirev A, Snigireva I and Schutz G 2014 J. Synchrotron Radiat. 21 640
[18] Kamijo N, Suzuki Y, Takano H, Tamura S, Yasumoto M, Takeuchi A and Awaji M 2003 Rev. Sci. Instrum. 74 5101
[19] Shu J H, Chen Z Y, Pu J X and Liu Y X 2011 Chin. Phys. B 20 114202
[20] Moldovan N, Divan R, Zeng H J, Ocola L E, De Andrade V and Wojcik M 2018 J. Vac. Sci. Technol. A 36 01A124
[21] Vila-Comamala J, Jefimovs K, Raabe J, Pilvi T, Fink R H, Senoner M, Maassdorf A, Ritala M and David C 2009 Ultramicroscopy 109 1360
[22] Vila-Comamala J, Gorelick S, Farm E, Kewish C M, Diaz A, Barrett R, Guzenko V A, Ritala M and David C 2011 Opt. Express 19 175
[23] Reinspach J, Lindblom M, Bertilson M, Hofsten O v, Hertz H M and Holmberg A 2011 J. Vac. Sci. Technol. B 29 011012
[24] Feng Y, Feser M, Lyon A, Rishton S, Zeng X H, Chen S, Sassolini S and Yun W B 2007 J. Vac. Sci. Technol. B 25 2004
[25] Peuker M 2001 Appl. Phys. Lett. 78 2208
[26] David C, Medenwaldt R, Thieme J, Guttmann P, Rudolph D and Schmahl G 1992 J. Opt. 23 255
[27] Parfeniukas K, Rahomaki J, Giakoumidis S, Seiboth F, Wittwer F, Schroer C G and Vogt U 2016 Microelectron. Eng. 152 6
[28] Gorelick S, Vila-Comamala J, Guzenko V A, Barrett R, Salome M and David C 2011 J. Synchrotron Radiat. 18 442
[29] Chen Y T, Lo T N, Chiu CmW, Wang JnY, Wang C L, Liu C J, Wu S R, Jeng S T, Yang C C, Shiue J, Chen C H, Hwu Y, Yin G C, Lin H M, Je J H and Margaritondo G 2008 J. Synchrotron Radiat. 15 170
[30] Gorelick S, Vila-Comamala J, Guzenko V A and David C 2011 Microelectron. Eng. 88 2259
[31] Guzenko V A, Romijn J, Vila-Comamala J, Gorelick S and David C 2011 Aip. Conf. Proc. 1365 92
[32] Chao W, Fischer P, Tyliszczak T, Rekawa S, Anderson E and Naulleau P 2012 Opt. Express 20 9777
[33] Kirz J 1974 J. Opt. Soc. Am. 64 301
[34] Liu J P, Shao J H, Zhang S C, Ma Y Q, Taksatorn N, Mao C W, Chen Y F, Deng B and Xiao T Q 2015 Appl. Opt. 54 9630
[1] Investigations of moiré artifacts induced by flux fluctuations in x-ray dark-field imaging
Zhi-Li Wang(王志立), Zi-Han Chen(陈子涵), Yao Gu(顾瑶), Heng Chen(陈恒), and Xin Ge(葛昕). Chin. Phys. B, 2023, 32(3): 038704.
[2] Analysis of refraction and scattering image artefacts in x-ray analyzer-based imaging
Li-Ming Zhao(赵立明), Tian-Xiang Wang(王天祥), Run-Kang Ma(马润康), Yao Gu(顾瑶), Meng-Si Luo(罗梦丝), Heng Chen(陈恒), Zhi-Li Wang(王志立), and Xin Ge(葛昕). Chin. Phys. B, 2023, 32(2): 028701.
[3] Efficient implementation of x-ray ghost imaging based on a modified compressive sensing algorithm
Haipeng Zhang(张海鹏), Ke Li(李可), Changzhe Zhao(赵昌哲), Jie Tang(汤杰), and Tiqiao Xiao(肖体乔). Chin. Phys. B, 2022, 31(6): 064202.
[4] Quantitative coherence analysis of dual phase grating x-ray interferometry with source grating
Zhi-Li Wang(王志立), Rui-Cheng Zhou(周瑞成), Li-Ming Zhao(赵立明), Kun Ren(任坤), Wen Xu(徐文), Bo Liu(刘波), and Heng Chen(陈恒). Chin. Phys. B, 2021, 30(2): 028702.
[5] Retrieval of multiple scattering contrast from x-ray analyzer-based imaging
Heng Chen(陈恒), Bo Liu(刘波), Li-Ming Zhao(赵立明), Kun Ren(任坤), and Zhi-Li Wang(王志立). Chin. Phys. B, 2021, 30(1): 018701.
[6] Biases of estimated signals in x-ray analyzer-based imaging
Jianlin Xia(夏健霖), Wen Xu(徐文), Ruicheng Zhou(周瑞成), Xiaomin Shi(石晓敏), Kun Ren(任坤), Heng Chen(陈恒), Zhili Wang(王志立). Chin. Phys. B, 2020, 29(6): 068703.
[7] Theory and method of dual-energy x-ray grating phase-contrast imaging
Feng Rong(荣锋), Yan Gao(高艳), Cui-Juan Guo(郭翠娟), Wei Xu(徐微), Wei Xu(徐伟). Chin. Phys. B, 2019, 28(10): 108702.
[8] Shifting curves based on the detector integration effect for x-ray phase contrast imaging
Jun Yang(杨君), Jin-Chuan Guo(郭金川), Yao-Hu Lei(雷耀虎), Ming-Hao Yi(易明皓), Li Chen(陈力). Chin. Phys. B, 2017, 26(2): 028701.
[9] Simple phase extraction in x-ray differential phase contrast imaging
Xin Liu(刘鑫), Jin-Chuan Guo(郭金川), Yao-Hu Lei(雷耀虎), Ji Li(李冀), Han-Ben Niu(牛憨笨). Chin. Phys. B, 2016, 25(2): 028704.
[10] Elemental x-ray imaging using Zernike phase contrast
Qi-Gang Shao(邵其刚), Jian Chen(陈健), Faiz Wali, Yuan Bao(鲍园), Zhi-Li Wang(王志立), Pei-Ping Zhu(朱佩平), Yang-Chao Tian(田扬超), Kun Gao(高昆). Chin. Phys. B, 2016, 25(10): 108702.
[11] Design and fabrication of structural color by local surface plasmonic meta-molecules
Ma Ya-Qi (马亚琪), Shao Jin-Hai (邵金海), Zhang Ya-Feng (张亚峰), Lu Bing-Rui (陆冰睿), Zhang Si-Chao (张思超), Sun Yan (孙艳), Qu Xin-Ping (屈新萍), Chen Yi-Fang (陈宜方). Chin. Phys. B, 2015, 24(8): 080702.
[12] Experimental research on the feature of an x-ray Talbot-Lau interferometer versus tube accelerating voltage
Wang Sheng-Hao (王圣浩), Margie P. Olbinado, Atsushi Momose, Han Hua-Jie (韩华杰), Hu Ren-Fang (胡仁芳), Wang Zhi-Li (王志立), Gao Kun (高昆), Zhang Kai (张凯), Zhu Pei-Ping (朱佩平), Wu Zi-Yu (吴自玉). Chin. Phys. B, 2015, 24(6): 068703.
[13] Cosine fitting radiography and computed tomography
Li Pan-Yun (李盼云), Zhang Kai (张凯), Huang Wan-Xia (黄万霞), Yuan Qing-Xi (袁清习), Wang Yan (王研), Ju Zai-Qiang (鞠在强), Wu Zi-Yu (吴自玉), Zhu Pei-Ping (朱佩平). Chin. Phys. B, 2015, 24(6): 068704.
[14] Investigation of noise properties in grating-based x-ray phase tomography with reverse projection method
Bao Yuan (鲍园), Wang Yan (王研), Gao Kun (高昆), Wang Zhi-Li (王志立), Zhu Pei-Ping (朱佩平), Wu Zi-Yu (吴自玉). Chin. Phys. B, 2015, 24(10): 108702.
[15] Improvement and error analysis of quantitative information extraction in diffraction-enhanced imaging
Yang Hao (杨浩), Xuan Rui-Jiao (轩瑞娇), Hu Chun-Hong (胡春红), Duan Jing-Hao (段敬豪). Chin. Phys. B, 2014, 23(4): 048701.
No Suggested Reading articles found!