CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Nuclear spin induced collapse and revival shape of Rabi oscillations of a single electron spin in diamond |
Hu Xin(胡欣)a)b), Liu Dong-Qi(刘东奇)a), and Pan Xin-Yu(潘新宇)a)† |
a Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; b School of Physics, Nankai University, Tianjin 300071, China |
|
|
Abstract A collapse and revival shape of Rabi oscillations in an electron spin of a single nitrogen-vacancy centre has been observed in diamond at room temperature. Because of hyperfine interaction between the host 14N nuclear spin and the nitrogen-vacancy centre electron spin, different orientations of the 14N nuclear spins lead to a triplet splitting of the transition between ground state (ms =0) and excited state (ms =1). The manipulation of the single electron spin of nitrogen-vacancy centre is achieved by using a combination of selective microwave excitation and optical pumping at 532 nm. Microwaves can excite three transitions equally to induce three independent nutations and the shape of Rabi oscillations is a combination of the three nutations.
|
Received: 07 July 2011
Revised: 06 August 2011
Accepted manuscript online:
|
PACS:
|
78.47.jm
|
(Quantum beats)
|
|
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
71.55.Ht
|
(Other nonmetals)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2009CB929103) and the National Natural Science
Foundation of China (Grant No. 10974251). |
Cite this article:
Hu Xin(胡欣), Liu Dong-Qi(刘东奇), and Pan Xin-Yu(潘新宇) Nuclear spin induced collapse and revival shape of Rabi oscillations of a single electron spin in diamond 2011 Chin. Phys. B 20 117801
|
[1] |
Kane B E 1998 Nature 393 133
|
[2] |
Clark R G, Brenner R, Buehler T M, et al. 2003 Philos. Trans. R. Soc. London A 361 1451
|
[3] |
Stoneham A M, Fisher A J and Greenland P T 2003 J. Phys. Condens. Matter 15 L447
|
[4] |
Redman D A, Brown S, Sands R H and Rand S C 1991 Phys. Rev. Lett. 67 3420
|
[5] |
Gruber A, Dräbenstedt A, Tietz C, Fleury L, Wrachtrup J and Borczyskowski C 1997 Science 276 2012
|
[6] |
Hanson R, Mendoza F M, Epstein R J and Awschalom D D 2006 Phys. Rev. Lett. 97 087601
|
[7] |
Kennedy T A, Colton J S, Butler J E, Linares R C and Doering P J 2003 Appl. Phys. Lett. 83 4190
|
[8] |
Jelezko F, Gaebel T, Popa I, Domhan M, Gruber A and Wrachtrup J 2004 Phys. Rev. Lett. 93 130501
|
[9] |
Jelezko F, Gaebel T, Popa I, Gruber A and Wrachtrup J 2004 Phys. Rev. Lett. 92 076401
|
[10] |
Childress L, Gurudev Dutt M V, Taylor J M, Zibrov A S, Jelezko F, Wrachtrup J, Hemmer P R and Lukin M D 2006 Science 314 281
|
[11] |
Hanson R, Dobrovitski V V, Feiguin A E, Gywat O and Awschalom D D 2008 Science 320 352
|
[12] |
Shi F Z, Rong X, Xu N Y, Wang Y, Wu J, Chong B, Peng X H, Kniepert J, Schoenfeld R S, Harmeit W, Feng M and Du J F 2010 Phys. Rev. Lett. 105 040504
|
[13] |
Childress L 2007 Coherent Manipulation of Single Quantum Systems in the Solid State (Ph.D. dissertation) (Boston: Harvard University)
|
[14] |
Huo W Y and Long G L 2007 Commun. Theor. Phys. 48 1029
|
[15] |
Liao X P, Fang J S and Fang M F 2010 Chin. Phys. B 19 094203
|
[16] |
Gaebel T, Domhan M, Popa I, Wittmann C, Neumann P, Jelezko F, Rabeau J R, Stavrias N, Greentree A D, Prawer S, Meijer J, Twamley J, Hemmer P R and Wrachtrup J 2006 Nature Phys. 2 408
|
[17] |
Mita Y 1996 Phys. Rev. B 53 11360
|
[18] |
Goss J P, Jones R, Briddon P R, Davies G, Collins A T, Mainwood A, Wyk J A, Baker J M, Newton M E, Stoneham A M and Lawson S C 1997 Phys. Rev. B 56 16031
|
[19] |
Nizovtsev A P, Kilin S Y, Jelezko F, Popa I, Gruber A, Tietz C and Wrachtrup J 2003 Opt. Spectrosc. 94 848
|
[20] |
Nizovtsev A P, Kilin S Y, Jelezko F, Popa I, Gruber A and Wrachtrup J 2003 Physica B 340 106
|
[21] |
Harrison J, Sellers M J and Manson N B 2004 J. Lumin. 107 245
|
[22] |
Jelezko F, Popa I, Gruber A, Tietz C, Wrachtrup J, Nizovtsev A and Kilin S 2002 Appl. Phys. Lett. 81 2160
|
[23] |
Zhang B, Zhang H J, Yang Q H and Lu S Z 2010 Acta Phys. Sin. 59 1333 (in Chinese)
|
[24] |
Dräbenstedt A, Fleury L, Tietz C, Jelezko F, Kilin S, Nizovtzev A and Wrachtrup J 1999 Phys. Rev. B 60 11503
|
[25] |
Meijer J, Burchard B, Domhan M, Wittmann C, Gaebel T, Popa I, Jelezko F and Wrachtrup J 2005 Appl. Phys. Lett. 87 261909
|
[26] |
Rabeaua J R, Reichart P, Tamanyan G, Jamieson D N,Prawer S,Jelezko F, Gaebel T, Popa I, Domhan M and Wrachtrup J 2006 Appl. Phys. Lett. 88 023113
|
[27] |
Meystre P and Sargent M 1999 Elements of Quantum Optics (Berlin: Springer-Verlag)
|
[28] |
Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press)
|
[29] |
Hahn E L 1950 Phys. Rev. 80 580
|
[30] |
Zhou F, Xu Y Y, Xie Y, Guo B, Shu H L, Li J M, Huang X R and Feng M 2010 Chin. Sci. Bull. 55 3094
|
[31] |
Liang Z Z, Liang J Q, Zheng N, Jia X P and Li G J 2009 Acta Phys. Sin. 58 8039 (in Chinese)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|