Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(11): 117303    DOI: 10.1088/1674-1056/20/11/117303
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Fano effect of a parallel-coupled triple Rashba quantum dot system

He Ze-Long(贺泽龙)a)b), Lü Tian-Quan(吕天全)a), Cui Lian(崔莲)a),Xue Hui-Jie(薛惠杰)a)c), Li Lin-Jun(李林军)a)b), and Yin Hai-Tao(尹海涛)c)
a Center for Condensed-Matter Science and Technology, Harbin Institute of Technology, Harbin 150080, China; b Department of Electronic Engineering, Heilongjiang Institute of Technology, Harbin 150050, China; c School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China
Abstract  Using the nonequilibrium Keldysh Green's function technique, the Fano effect of a parallel-coupled triple Rashba quantum dot system is investigated. The conductance as a function of electron energy is numerically calculated. Compared with the case of a parallel-coupled double quantum dot system, two additional Fano resonance peaks occur in the conductance spectrum. By adjusting the structural parameters, the two Fano resonance peaks may change into the resonance peaks. In addition, the influence of Rashba spin-orbit interaction on the conductance is studied.
Keywords:  nonequilibrium Green's function      Fano effect      quantum dot      electronic transport  
Received:  24 February 2011      Revised:  19 June 2011      Accepted manuscript online: 
PACS:  73.63.-b (Electronic transport in nanoscale materials and structures)  
  73.23.-b (Electronic transport in mesoscopic systems)  
  05.60.Gg (Quantum transport)  
Fund: Project supported by the Youth Foundation of Heilongjiang Province, China (Grant No. QC2009C41) and the Heilongjiang Provincial Natural Science Foundation, China (Grant No. F200939).

Cite this article: 

He Ze-Long(贺泽龙), Lü Tian-Quan(吕天全), Cui Lian(崔莲), Xue Hui-Jie(薛惠杰), Li Lin-Jun(李林军), and Yin Hai-Tao(尹海涛) Fano effect of a parallel-coupled triple Rashba quantum dot system 2011 Chin. Phys. B 20 117303

[1] Zhao H K 1997 Phys. Lett. A 226 105
[2] van der Wiel W G, de Franceschi S, Elzerman J M, Fujisawa T, Tarucha S and Kouwenhoven L P 2002 Rev. Mod. Phys. 75 1
[3] Sánchez D and López R 2005 Phys. Rev. B 71 035315
[4] Ye S J, He Z L and Li H 2009 Phys. Scr. 79 035702
[5] He Z L, Lü T Q, Li H and Yin H T 2006 Phys. Lett. A 360 199
[6] Gong W J, Zheng Y S, Liu Y, Kariuki F N and Lü T Q 2008 Phys. Lett. A 372 2934
[7] Wang R, Kong L M, Zhou Y Q, Zhang C X and Xing Z Y 2010 Chin. Phys. B 19 127202
[8] Donarini A, Begemann G and Grifoni M 2010 Phys. Rev. B 82 125451
[9] Hatef A and Singh M R 2010 Phys. Rev. A 81 063816
[10] Malecki J and Affleck I 2010 Phys. Rev. B 82 165426
[11] Sun Q F and Guo H 2001 Phys. Rev. B 64 153306
[12] vZitko R 2010 Phys. Rev. B 81 115316
[13] Goker A 2010 Phys. Status Solidi B 247 129
[14] Yin H T, Lü T Q, Sun P N, Liu X J and Xue H J 2009 Phys. Lett. A 373 3085
[15] Hou T, Wu S Q, Bi A H, Yang F B, Chen J F and Fan M 2009 Chin. Phys. B 18 783
[16] Lu H Z, Lü R and Zhu B F 2006 Physica E 34 538
[17] Chi F and Zheng J 2008 Appl. Phys. Lett. 92 062106
[18] de Guevara M L L, Claro F and Orellana P A 2003 Phys. Rev. B 67 195335
[19] Lu H Z, Lü R and Zhu B F 2005 Phys. Rev. B 71 235320
[20] Jauho A P, Wingreen N S and Meir Y 1994 Phys. Rev. B 50 5528
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[4] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[5] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[6] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[7] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[8] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[9] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[10] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[11] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[12] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[13] Chiral splitting of Kondo peak in triangular triple quantum dot
Yi-Ming Liu(刘一铭), Yuan-Dong Wang(王援东), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(5): 057201.
[14] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[15] Preparation of PSFO and LPSFO nanofibers by electrospinning and their electronic transport and magnetic properties
Ying Su(苏影), Dong-Yang Zhu(朱东阳), Ting-Ting Zhang(张亭亭), Yu-Rui Zhang(张玉瑞), Wen-Peng Han(韩文鹏), Jun Zhang(张俊), Seeram Ramakrishna, and Yun-Ze Long(龙云泽). Chin. Phys. B, 2022, 31(5): 057305.
No Suggested Reading articles found!