Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(10): 106104    DOI: 10.1088/1674-1056/20/10/106104
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Infrared response of the lateral PIN structure of a highly titanium-doped silicon-on-insulator material

Ma Zhi-Hua(马志华), Cao Quan(曹权), Zuo Yu-Hua(左玉华),Zheng Jun(郑军), Xue Chun-Lai(薛春来), Cheng Bu-Wen(成步文), and Wang Qi-Ming(王启明)
State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Abstract  The intermediate band (IB) solar cell is a promising third-generation solar cell that could possibly achieve very high efficiency above the Shockley-Queisser limit. One of the promising ways to synthesize IB material is to introduce heavily doped deep level impurities in conventional semiconductors. High-doped Ti with a concentration of 1020 cm-3-1021 cm-3 in the p-type top Si layer of silicon-on-insulator (SOI) substrate is obtained by ion implantation and rapid thermal annealing (RTA). Secondary ion mass spectrometry measurements confirm that the Ti concentration exceeds the theoretical Mott limit, the main requirement for the formation of an impurity intermediate band. Increased absorption is observed in the infrared (IR) region by Fourier transform infrared spectroscopy (FTIR) technology. By using a lateral p-i-n structure, an obvious infrared response in a range of 1100 nm-2000 nm is achieved in a heavily Ti-doped SOI substrate, suggesting that the improvement on IR photoresponse is a result of increased absorption in the IR. The experimental results indicate that heavily Ti-implanted Si can be used as a potential kind of intermediate-band photovoltaic material to utilize the infrared photons of the solar spectrum.
Keywords:  infrared response      ion implantation      rapid thermal annealing      intermediate band solar cell  
Received:  29 March 2011      Revised:  19 May 2011      Accepted manuscript online: 
PACS:  61.72.U- (Doping and impurity implantation)  
  78.40.Fy (Semiconductors)  
  80.40.jj  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61036001, 51072194, and 60906035).

Cite this article: 

Ma Zhi-Hua(马志华), Cao Quan(曹权), Zuo Yu-Hua(左玉华),Zheng Jun(郑军), Xue Chun-Lai(薛春来), Cheng Bu-Wen(成步文), and Wang Qi-Ming(王启明) Infrared response of the lateral PIN structure of a highly titanium-doped silicon-on-insulator material 2011 Chin. Phys. B 20 106104

[1] Luque A and Mart'hi A 1997 Phys. Rev. Lett. 78 5014
[2] Gu Y X, Yang T, Ji H M, Xu P F and Wang Z G 2010 Chin. Phys. B 19 088102
[3] Wang W, Lin A S and Phillips J D 2009 Appl. Phys. Lett. 95 011103
[4] Lo'pez N, Reichertz L A, Yu K M, Campman K and Walukiewicz W 2011 Phys. Rev. Lett. 106 028701
[5] Liu X M, Li B C and Huang Q P 2010 Chin. Phys. B 19 097201
[6] Liu X M, Li B C, Gao W D and Han Y L 2010 Acta Phys. Sin. 59 1632 (in Chinese)
[7] Olea J, Toledano-Luque M, Pastor D, San-Andr'es D, M'artil I and Gonz'alez-D'hiaz G 2010 J. Appl. Phys. 107 103524
[8] Olea J, Gonz'al'ez-D'hiaz G, Pastor D and M'artil I 2009 J. Phys. D: Appl. Phys. 42 085110
[9] Luque A, Mart'hi A, Antol'hin E and Tablero C 2006 Physica B 382 320
[10] Spitzer W and Fan H Y 1957 Phys. Rev. 108 268
[11] Li C B, Huang C J, Cheng B W, Zuo Y H, Mao R W, Luo L P, Yu J Z and Wang Q M 2004 J. Appl. Phys. 95 5914
[12] Myers R A, Farrell R, Karger A M, Carey J E and Mazur E 2006 Appl. Opt. 45 8825
[13] Mathol D and Hocine S 1989 J. Appl. Phys. 66 5862
[14] Roth T, Rüdiger M, Warta W and Glunz S W 2008 J. Appl. Phys. 104 074510
[15] Geis M W, Spector S J, Grein M E, Schulein R T, Yoon J U, Lennon D M, Wynn C M, Palmacci S T, Gan F, K"artner F X and Lyszczarz T M 2007 Opt. Express 15 16886
[16] Preston K, Lee Y H D, Zhang M and Lipson M 2011 Opt. Lett. 36 52
[1] Surface defects, stress evolution, and laser damage enhancement mechanism of fused silica under oxygen-enriched condition
Wei-Yuan Luo(罗韦媛), Wen-Feng Sun(孙文丰), Bo Li(黎波), Xia Xiang(向霞), Xiao-Long Jiang(蒋晓龙),Wei Liao(廖威), Hai-Jun Wang(王海军), Xiao-Dong Yuan(袁晓东),Xiao-Dong Jiang(蒋晓东), and Xiao-Tao Zu(祖小涛). Chin. Phys. B, 2022, 31(5): 054214.
[2] Surface chemical disorder and lattice strain of GaN implanted by 3-MeV Fe10+ ions
Jun-Yuan Yang(杨浚源), Zong-Kai Feng(冯棕楷), Ling Jiang(蒋领), Jie Song(宋杰), Xiao-Xun He(何晓珣), Li-Ming Chen(陈黎明), Qing Liao(廖庆), Jiao Wang(王姣), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2022, 31(4): 046103.
[3] Differential nonlinear photocarrier radiometry for characterizing ultra-low energy boron implantation in silicon
Xiao-Ke Lei(雷晓轲), Bin-Cheng Li(李斌成), Qi-Ming Sun(孙启明), Jing Wang(王静), Chun-Ming Gao(高椿明), and Ya-Fei Wang(王亚非). Chin. Phys. B, 2022, 31(3): 038102.
[4] Optical properties of He+-implanted and diamond blade-diced terbium gallium garnet crystal planar and ridge waveguides
Jia-Li You(游佳丽), Yu-Song Wang(王雨松), Tong Wang(王彤), Li-Li Fu(付丽丽), Qing-Yang Yue(岳庆炀), Xiang-Fu Wang(王祥夫), Rui-Lin Zheng(郑锐林), and Chun-Xiao Liu(刘春晓). Chin. Phys. B, 2022, 31(11): 114203.
[5] Mechanism of defect evolution in H+ and He+ implanted InP
Ren-Jie Liu(刘仁杰), Jia-Jie Lin(林家杰), N Daghbouj, Jia-Liang Sun(孙嘉良), Tian-Gui You(游天桂), Peng Gao(高鹏), Nie-Feng Sun(孙聂枫), and Min Liao(廖敏). Chin. Phys. B, 2021, 30(8): 086104.
[6] Formation of nano-twinned 3C-SiC grains in Fe-implanted 6H-SiC after 1500-℃ annealing
Zheng Han(韩铮), Xu Wang(王旭), Jiao Wang(王娇), Qing Liao(廖庆), and Bingsheng Li(李炳生). Chin. Phys. B, 2021, 30(8): 086107.
[7] Structure and luminescence of a-plane GaN on r-plane sapphire substrate modified by Si implantation
Lijie Huang(黄黎杰), Lin Li(李琳), Zhen Shang(尚震), Mao Wang(王茂), Junjie Kang(康俊杰), Wei Luo(罗巍), Zhiwen Liang(梁智文), Slawomir Prucnal, Ulrich Kentsch, Yanda Ji(吉彦达), Fabi Zhang(张法碧), Qi Wang(王琦), Ye Yuan(袁冶), Qian Sun(孙钱), Shengqiang Zhou(周生强), and Xinqiang Wang(王新强). Chin. Phys. B, 2021, 30(5): 056104.
[8] Cathodic shift of onset potential on TiO2 nanorod arrays with significantly enhanced visible light photoactivity via nitrogen/cobalt co-implantation
Xianyin Song(宋先印), Hongtao Zhou(周洪涛), and Changzhong Jiang(蒋昌忠). Chin. Phys. B, 2021, 30(5): 058505.
[9] Characterization of low-resistance ohmic contacts to heavily carbon-doped n-type InGaAsBi films treated by rapid thermal annealing
Shu-Xing Zhou(周书星), Li-Kun Ai(艾立鹍), Ming Qi(齐鸣), An-Huai Xu(徐安怀), Jia-Sheng Yan(颜家圣), Shu-Sen Li(李树森), and Zhi Jin(金智). Chin. Phys. B, 2021, 30(2): 027304.
[10] Oxygen vacancies and V co-doped Co3O4 prepared by ion implantation boosts oxygen evolution catalysis
Bo Sun(孙博), Dong He(贺栋), Hongbo Wang(王宏博), Jiangchao Liu(刘江超), Zunjian Ke(柯尊健), Li Cheng(程莉), and Xiangheng Xiao(肖湘衡). Chin. Phys. B, 2021, 30(10): 106102.
[11] Determination of activation energy of ion-implanted deuterium release from W-Y2O3
Xue-Feng Wang(王雪峰), Ji-Liang Wu(吴吉良), Qiang Li(李强), Rui-Zhu Yang(杨蕊竹), Zhan-Lei Wang(王占雷), Chang-An Chen(陈长安), Chun-Rong Feng(冯春蓉), Yong-Chu Rao(饶咏初), Xiao-Hong Chen(谌晓洪), Xiao-Qiu Ye(叶小球). Chin. Phys. B, 2020, 29(6): 065205.
[12] Influence of N+ implantation on structure, morphology, and corrosion behavior of Al in NaCl solution
Hadi Savaloni, Rezvan Karami, Helma Sadat Bahari, Fateme Abdi. Chin. Phys. B, 2020, 29(5): 058102.
[13] Fabrication and characterization of vertical GaN Schottky barrier diodes with boron-implanted termination
Wei-Fan Wang(王伟凡), Jian-Feng Wang(王建峰), Yu-Min Zhang(张育民), Teng-Kun Li(李腾坤), Rui Xiong(熊瑞), Ke Xu(徐科). Chin. Phys. B, 2020, 29(4): 047305.
[14] Experimental and computational study of visible light-induced photocatalytic ability of nitrogen ions-implanted TiO2 nanotubes
Ruijing Zhang(张瑞菁), Xiaoli Liu(刘晓丽), Xinggang Hou(侯兴刚), Bin Liao(廖斌). Chin. Phys. B, 2020, 29(4): 048501.
[15] High quality NbTiN films fabrication and rapid thermal annealing investigation
Huan Ge(葛欢), Yi-Rong Jin(金贻荣), Xiao-Hui Song(宋小会). Chin. Phys. B, 2019, 28(7): 077402.
No Suggested Reading articles found!