Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(10): 106201    DOI: 10.1088/1674-1056/20/10/106201
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Investigations of phase transition, elastic and thermodynamic properties of GaP by using the density functional theory

Liu Li(刘丽)a)b), Wei Jian-Jun(韦建军)a), An Xin-You(安辛友)b), Wang Xue-Min(王雪敏)b), Liu Hui-Na(刘会娜)b), and Wu Wei-Dong(吴卫东)b)†
a Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China; b Reseach Centre of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China
Abstract  The phase transition of gallium phosphide (GaP) from zinc-blende (ZB) to a rocksalt (RS) structure is investigated by the plane-wave pseudopotential density functional theory (DFT). Lattice constant a0, elastic constants cij, bulk modulus B0 and the pressure derivative of bulk modulus B0' are calculated. The results are in good agreement with numerous experimental and theoretical data. From the usual condition of equal enthalpies, the phase transition from the ZB to the RS structure occurs at 21.9 GPa, which is close to the experimental value of 22.0 GPa. The elastic properties of GaP with the ZB structure in a pressure range from 0 GPa to 21.9 GPa and those of the RS structure in a pressure range of pressures from 21.9 GPa to 40 GPa are obtained. According to the quasi-harmonic Debye model, in which the phononic effects are considered, the normalized volume V/V0, the Debye temperature θ, the heat capacity Cv and the thermal expansion coefficient $\alpha$ are also discussed in a pressure range from 0 GPa to 40 GPa and a temperature range from 0 K to 1500 K.
Keywords:  GaP      phase transition      density functional theory      thermodynamic properties  
Received:  12 November 2010      Revised:  13 May 2011      Accepted manuscript online: 
PACS:  62.20.D- (Elasticity)  
  65.40.-b (Thermal properties of crystalline solids)  
  62.50.-p (High-pressure effects in solids and liquids)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  

Cite this article: 

Liu Li(刘丽), Wei Jian-Jun(韦建军), An Xin-You(安辛友), Wang Xue-Min(王雪敏), Liu Hui-Na(刘会娜), and Wu Wei-Dong(吴卫东) Investigations of phase transition, elastic and thermodynamic properties of GaP by using the density functional theory 2011 Chin. Phys. B 20 106201

[1] Sukit L, Reunchan P, Janotti A and Chris G V W 2008 Phys. Rev. B 77 195209
[2] Sjakste J, Vast N and Tyuterev V 2007 Phys. Rev. Lett. 99 236405
[3] Rashid Ahmed R, Aleem F, Hashemifar S J and Akbarzadeh H 2008 Physica B: Conden. Matter 403 1876
[4] Garcfa A and Cohen M L 1993 Phys. Rev. B 47 6751
[5] Mujica A and Needs R J 1997 Phys. Rev. B 55 9659
[6] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[7] Hammer B, Hansen L B and Norskov J K 1999 Phys. Rev. B 59 7413
[8] Payne M C, Teter M P, Allen D C, Arias T A and Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045
[9] Milman V, Winkler B, White J A, Packard C J, Payne M C, Akhmatskaya E V and Nobes R H 2000 Int. J. Quantum Chem. 77 895
[10] Arbouche O, Belgoum`ene B, Soudini B, Azzaz Y, Bendaoud H and Amara K 2010 Comput. Mater. Sci. 47 685
[11] Birch F 1947 Phys. Rev. 71 809
[12] Wentzcovitch R M, Chang K J and Cohen M L 1986 Phys. Rev. B 34 1071
[13] Bouhafs B, Aourag H and Cartier M 2000 J. Phys.: Conden. Matter 12 5655
[14] Madelung O and Landolt B 1982 Numerical Data and Functional Relationships in Science and Technology New Series (Berlin: Springer)
[15] Madelung O and Landolt B 1982 Semiconductors, Physics of Group IV Elements and III-V Compounds, New Series, Group III, Vol. 17 (Berlin: Springer-Verlag)
[16] Pinceaux J P, Besson J M, Rimsky A and Weil G 1980 High Pressure Science and Technolgy, Proceedings of the 8th AIR APT Conference (Oxford: Pergamon)
[17] Baublitz M and Ruoff A L 1982 J. Appl. Phys. 53 6179
[18] Miller A J, Saunders G A and Yogurtcu Y K 1981 Philos. Mag. A 43 1447
[19] Froyen S and Cohen M L 1983 Phys. Rev. B 28 3258
[20] Debye P and Ann 1912 Physica 39 789
[21] Petit A T, Dulong P L and Ann 1819 Chim. Phys. 10 395
[22] Wang J H, Li J, Yip S, Phillpot S and Wolf D 1995 Phys. Rev. B 52 12627
[23] Wallace D C 1972 Thermodynamics of Crystals (New York: Wiley) Sec. 24
[24] Karki B B, Ackland G J and Crain J 1997 J. Phys.: Conden. Matter 9 8579
[25] Barron T H K and Klein M L 1965 Proc. Phys. Soc. 85 523
[26] Alain P and Marcos G 1999 Phys. Rev. B 60 1468
[27] Gehrlich D and Wolf M 1980 High Pressure Science and Technology (Oxford: Pergamon) p. 506
[28] Blanco M A, Francisco E and Luana V 2004 Comput. Phys. Commun. 158 7
[29] Maradudin A A, Montroll E W, Weiss G H and Ipatova I P 1971 Theory of Lattice Dynamics in the Harmonic Approximation (New York: Academic)
[30] Blanco M A, Mart'hin Pend'as A, Francisco E, Recio J M and Franco R 1996 J. Mol. Struct. 368 245
[31] Fl'Orez M, Recio J M, Francisco E, Blanco M A and Pend'as A M 2002 Phys. Rev. B 66 144112
[32] Francisco E, Recio J M, Blanco M A and Mart'hin Pend'as A 1998 J. Phys. Chem. 102 1595
[33] Francisco E, Sanjurjo G and Blanco M A 2001 Phys. Rev. B 63 094107
[34] Poirier J P 2000 Introduction to the Physics of the Earth's Interior (Oxford: Cambridge University Press) p. 11
[35] Cheng Y, Lu L Y, Jia O H and Chen X R 2008 Chin. Phys. B 17 1355
[36] Yu J X, Fu M, Ji G F and Chen X R 2009 Chin. Phys. B 18 2690
[37] Chen D, Chen J D, Zhao L H, Wang C L, Yu B H and Shi D H 2009 Chin. Phys. B 18 738
[38] Liu N N, Song R B and Du D W 2009 Chin. Phys. B 18 1979
[39] Einstein A and Ann 1907 Physica 22 80
[40] Nernst W, Lindemann A F, Elektrochem Z and Angew 1977 Phys. Chem. 17 817
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[3] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[4] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[5] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[6] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[7] Response characteristics of drill-string guided wave in downhole acoustic telemetry
Ao-Song Zhao(赵傲耸), Hao Chen(陈浩), Xiao He(何晓), Xiu-Ming Wang(王秀明), and Xue-Shen Cao(曹雪砷). Chin. Phys. B, 2023, 32(3): 034301.
[8] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[9] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[10] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[11] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[12] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[13] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[14] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[15] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
No Suggested Reading articles found!